Spaces:
Runtime error
Runtime error
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..modeling_utils import ModelMixin | |
from ..utils import BaseOutput | |
from .unet_blocks import UNetMidBlock2D, get_down_block, get_up_block | |
class DecoderOutput(BaseOutput): | |
""" | |
Output of decoding method. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Decoded output sample of the model. Output of the last layer of the model. | |
""" | |
sample: torch.FloatTensor | |
class VQEncoderOutput(BaseOutput): | |
""" | |
Output of VQModel encoding method. | |
Args: | |
latents (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Encoded output sample of the model. Output of the last layer of the model. | |
""" | |
latents: torch.FloatTensor | |
class AutoencoderKLOutput(BaseOutput): | |
""" | |
Output of AutoencoderKL encoding method. | |
Args: | |
latent_dist (`DiagonalGaussianDistribution`): | |
Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`. | |
`DiagonalGaussianDistribution` allows for sampling latents from the distribution. | |
""" | |
latent_dist: "DiagonalGaussianDistribution" | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
in_channels=3, | |
out_channels=3, | |
down_block_types=("DownEncoderBlock2D",), | |
block_out_channels=(64,), | |
layers_per_block=2, | |
act_fn="silu", | |
double_z=True, | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1) | |
self.mid_block = None | |
self.down_blocks = nn.ModuleList([]) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=self.layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
add_downsample=not is_final_block, | |
resnet_eps=1e-6, | |
downsample_padding=0, | |
resnet_act_fn=act_fn, | |
attn_num_head_channels=None, | |
temb_channels=None, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
self.mid_block = UNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
output_scale_factor=1, | |
resnet_time_scale_shift="default", | |
attn_num_head_channels=None, | |
resnet_groups=32, | |
temb_channels=None, | |
) | |
# out | |
num_groups_out = 32 | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=num_groups_out, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
conv_out_channels = 2 * out_channels if double_z else out_channels | |
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) | |
def forward(self, x): | |
sample = x | |
sample = self.conv_in(sample) | |
# down | |
for down_block in self.down_blocks: | |
sample = down_block(sample) | |
# middle | |
sample = self.mid_block(sample) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
return sample | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
in_channels=3, | |
out_channels=3, | |
up_block_types=("UpDecoderBlock2D",), | |
block_out_channels=(64,), | |
layers_per_block=2, | |
act_fn="silu", | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
# mid | |
self.mid_block = UNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
output_scale_factor=1, | |
resnet_time_scale_shift="default", | |
attn_num_head_channels=None, | |
resnet_groups=32, | |
temb_channels=None, | |
) | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=self.layers_per_block + 1, | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
prev_output_channel=None, | |
add_upsample=not is_final_block, | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
attn_num_head_channels=None, | |
temb_channels=None, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
num_groups_out = 32 | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) | |
def forward(self, z): | |
sample = z | |
sample = self.conv_in(sample) | |
# middle | |
sample = self.mid_block(sample) | |
# up | |
for up_block in self.up_blocks: | |
sample = up_block(sample) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
return sample | |
class VectorQuantizer(nn.Module): | |
""" | |
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix | |
multiplications and allows for post-hoc remapping of indices. | |
""" | |
# NOTE: due to a bug the beta term was applied to the wrong term. for | |
# backwards compatibility we use the buggy version by default, but you can | |
# specify legacy=False to fix it. | |
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True): | |
super().__init__() | |
self.n_e = n_e | |
self.e_dim = e_dim | |
self.beta = beta | |
self.legacy = legacy | |
self.embedding = nn.Embedding(self.n_e, self.e_dim) | |
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) | |
self.remap = remap | |
if self.remap is not None: | |
self.register_buffer("used", torch.tensor(np.load(self.remap))) | |
self.re_embed = self.used.shape[0] | |
self.unknown_index = unknown_index # "random" or "extra" or integer | |
if self.unknown_index == "extra": | |
self.unknown_index = self.re_embed | |
self.re_embed = self.re_embed + 1 | |
print( | |
f"Remapping {self.n_e} indices to {self.re_embed} indices. " | |
f"Using {self.unknown_index} for unknown indices." | |
) | |
else: | |
self.re_embed = n_e | |
self.sane_index_shape = sane_index_shape | |
def remap_to_used(self, inds): | |
ishape = inds.shape | |
assert len(ishape) > 1 | |
inds = inds.reshape(ishape[0], -1) | |
used = self.used.to(inds) | |
match = (inds[:, :, None] == used[None, None, ...]).long() | |
new = match.argmax(-1) | |
unknown = match.sum(2) < 1 | |
if self.unknown_index == "random": | |
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) | |
else: | |
new[unknown] = self.unknown_index | |
return new.reshape(ishape) | |
def unmap_to_all(self, inds): | |
ishape = inds.shape | |
assert len(ishape) > 1 | |
inds = inds.reshape(ishape[0], -1) | |
used = self.used.to(inds) | |
if self.re_embed > self.used.shape[0]: # extra token | |
inds[inds >= self.used.shape[0]] = 0 # simply set to zero | |
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) | |
return back.reshape(ishape) | |
def forward(self, z): | |
# reshape z -> (batch, height, width, channel) and flatten | |
z = z.permute(0, 2, 3, 1).contiguous() | |
z_flattened = z.view(-1, self.e_dim) | |
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z | |
d = ( | |
torch.sum(z_flattened**2, dim=1, keepdim=True) | |
+ torch.sum(self.embedding.weight**2, dim=1) | |
- 2 * torch.einsum("bd,dn->bn", z_flattened, self.embedding.weight.t()) | |
) | |
min_encoding_indices = torch.argmin(d, dim=1) | |
z_q = self.embedding(min_encoding_indices).view(z.shape) | |
perplexity = None | |
min_encodings = None | |
# compute loss for embedding | |
if not self.legacy: | |
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) | |
else: | |
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) | |
# preserve gradients | |
z_q = z + (z_q - z).detach() | |
# reshape back to match original input shape | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
if self.remap is not None: | |
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis | |
min_encoding_indices = self.remap_to_used(min_encoding_indices) | |
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten | |
if self.sane_index_shape: | |
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) | |
return z_q, loss, (perplexity, min_encodings, min_encoding_indices) | |
def get_codebook_entry(self, indices, shape): | |
# shape specifying (batch, height, width, channel) | |
if self.remap is not None: | |
indices = indices.reshape(shape[0], -1) # add batch axis | |
indices = self.unmap_to_all(indices) | |
indices = indices.reshape(-1) # flatten again | |
# get quantized latent vectors | |
z_q = self.embedding(indices) | |
if shape is not None: | |
z_q = z_q.view(shape) | |
# reshape back to match original input shape | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
return z_q | |
class DiagonalGaussianDistribution(object): | |
def __init__(self, parameters, deterministic=False): | |
self.parameters = parameters | |
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) | |
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) | |
self.deterministic = deterministic | |
self.std = torch.exp(0.5 * self.logvar) | |
self.var = torch.exp(self.logvar) | |
if self.deterministic: | |
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) | |
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor: | |
device = self.parameters.device | |
sample_device = "cpu" if device.type == "mps" else device | |
sample = torch.randn(self.mean.shape, generator=generator, device=sample_device).to(device) | |
x = self.mean + self.std * sample | |
return x | |
def kl(self, other=None): | |
if self.deterministic: | |
return torch.Tensor([0.0]) | |
else: | |
if other is None: | |
return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3]) | |
else: | |
return 0.5 * torch.sum( | |
torch.pow(self.mean - other.mean, 2) / other.var | |
+ self.var / other.var | |
- 1.0 | |
- self.logvar | |
+ other.logvar, | |
dim=[1, 2, 3], | |
) | |
def nll(self, sample, dims=[1, 2, 3]): | |
if self.deterministic: | |
return torch.Tensor([0.0]) | |
logtwopi = np.log(2.0 * np.pi) | |
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) | |
def mode(self): | |
return self.mean | |
class VQModel(ModelMixin, ConfigMixin): | |
r"""VQ-VAE model from the paper Neural Discrete Representation Learning by Aaron van den Oord, Oriol Vinyals and Koray | |
Kavukcuoglu. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library | |
implements for all the model (such as downloading or saving, etc.) | |
Parameters: | |
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. | |
out_channels (int, *optional*, defaults to 3): Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to : | |
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. | |
up_block_types (`Tuple[str]`, *optional*, defaults to : | |
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to : | |
obj:`(64,)`): Tuple of block output channels. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space. | |
sample_size (`int`, *optional*, defaults to `32`): TODO | |
num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE. | |
""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str] = ("DownEncoderBlock2D",), | |
up_block_types: Tuple[str] = ("UpDecoderBlock2D",), | |
block_out_channels: Tuple[int] = (64,), | |
layers_per_block: int = 1, | |
act_fn: str = "silu", | |
latent_channels: int = 3, | |
sample_size: int = 32, | |
num_vq_embeddings: int = 256, | |
): | |
super().__init__() | |
# pass init params to Encoder | |
self.encoder = Encoder( | |
in_channels=in_channels, | |
out_channels=latent_channels, | |
down_block_types=down_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
double_z=False, | |
) | |
self.quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) | |
self.quantize = VectorQuantizer( | |
num_vq_embeddings, latent_channels, beta=0.25, remap=None, sane_index_shape=False | |
) | |
self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) | |
# pass init params to Decoder | |
self.decoder = Decoder( | |
in_channels=latent_channels, | |
out_channels=out_channels, | |
up_block_types=up_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
) | |
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> VQEncoderOutput: | |
h = self.encoder(x) | |
h = self.quant_conv(h) | |
if not return_dict: | |
return (h,) | |
return VQEncoderOutput(latents=h) | |
def decode( | |
self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True | |
) -> Union[DecoderOutput, torch.FloatTensor]: | |
# also go through quantization layer | |
if not force_not_quantize: | |
quant, emb_loss, info = self.quantize(h) | |
else: | |
quant = h | |
quant = self.post_quant_conv(quant) | |
dec = self.decoder(quant) | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def forward(self, sample: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: | |
r""" | |
Args: | |
sample (`torch.FloatTensor`): Input sample. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
""" | |
x = sample | |
h = self.encode(x).latents | |
dec = self.decode(h).sample | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
class AutoencoderKL(ModelMixin, ConfigMixin): | |
r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma | |
and Max Welling. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library | |
implements for all the model (such as downloading or saving, etc.) | |
Parameters: | |
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. | |
out_channels (int, *optional*, defaults to 3): Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to : | |
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. | |
up_block_types (`Tuple[str]`, *optional*, defaults to : | |
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to : | |
obj:`(64,)`): Tuple of block output channels. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
latent_channels (`int`, *optional*, defaults to `4`): Number of channels in the latent space. | |
sample_size (`int`, *optional*, defaults to `32`): TODO | |
""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str] = ("DownEncoderBlock2D",), | |
up_block_types: Tuple[str] = ("UpDecoderBlock2D",), | |
block_out_channels: Tuple[int] = (64,), | |
layers_per_block: int = 1, | |
act_fn: str = "silu", | |
latent_channels: int = 4, | |
sample_size: int = 32, | |
): | |
super().__init__() | |
# pass init params to Encoder | |
self.encoder = Encoder( | |
in_channels=in_channels, | |
out_channels=latent_channels, | |
down_block_types=down_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
double_z=True, | |
) | |
# pass init params to Decoder | |
self.decoder = Decoder( | |
in_channels=latent_channels, | |
out_channels=out_channels, | |
up_block_types=up_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
) | |
self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) | |
self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) | |
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput: | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
if not return_dict: | |
return (posterior,) | |
return AutoencoderKLOutput(latent_dist=posterior) | |
def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z) | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def forward( | |
self, sample: torch.FloatTensor, sample_posterior: bool = False, return_dict: bool = True | |
) -> Union[DecoderOutput, torch.FloatTensor]: | |
r""" | |
Args: | |
sample (`torch.FloatTensor`): Input sample. | |
sample_posterior (`bool`, *optional*, defaults to `False`): | |
Whether to sample from the posterior. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
""" | |
x = sample | |
posterior = self.encode(x).latent_dist | |
if sample_posterior: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
dec = self.decode(z).sample | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |