Spaces:
Runtime error
Runtime error
from functools import partial | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class Upsample2D(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is | |
applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_conv_transpose = use_conv_transpose | |
self.name = name | |
conv = None | |
if use_conv_transpose: | |
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) | |
elif use_conv: | |
conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1) | |
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
if name == "conv": | |
self.conv = conv | |
else: | |
self.Conv2d_0 = conv | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.use_conv_transpose: | |
return self.conv(x) | |
x = F.interpolate(x, scale_factor=2.0, mode="nearest") | |
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
if self.use_conv: | |
if self.name == "conv": | |
x = self.conv(x) | |
else: | |
x = self.Conv2d_0(x) | |
return x | |
class Downsample2D(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is | |
applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.padding = padding | |
stride = 2 | |
self.name = name | |
if use_conv: | |
conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
else: | |
assert self.channels == self.out_channels | |
conv = nn.AvgPool2d(kernel_size=stride, stride=stride) | |
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
if name == "conv": | |
self.Conv2d_0 = conv | |
self.conv = conv | |
elif name == "Conv2d_0": | |
self.conv = conv | |
else: | |
self.conv = conv | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.use_conv and self.padding == 0: | |
pad = (0, 1, 0, 1) | |
x = F.pad(x, pad, mode="constant", value=0) | |
assert x.shape[1] == self.channels | |
x = self.conv(x) | |
return x | |
class FirUpsample2D(nn.Module): | |
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)): | |
super().__init__() | |
out_channels = out_channels if out_channels else channels | |
if use_conv: | |
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.use_conv = use_conv | |
self.fir_kernel = fir_kernel | |
self.out_channels = out_channels | |
def _upsample_2d(self, x, weight=None, kernel=None, factor=2, gain=1): | |
"""Fused `upsample_2d()` followed by `Conv2d()`. | |
Args: | |
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more | |
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary: | |
order. | |
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, | |
C]`. | |
weight: Weight tensor of the shape `[filterH, filterW, inChannels, | |
outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. | |
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` | |
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. | |
factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). | |
Returns: | |
Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as | |
`x`. | |
""" | |
assert isinstance(factor, int) and factor >= 1 | |
# Setup filter kernel. | |
if kernel is None: | |
kernel = [1] * factor | |
# setup kernel | |
kernel = np.asarray(kernel, dtype=np.float16) | |
if kernel.ndim == 1: | |
kernel = np.outer(kernel, kernel) | |
kernel /= np.sum(kernel) | |
kernel = kernel * (gain * (factor**2)) | |
if self.use_conv: | |
convH = weight.shape[2] | |
convW = weight.shape[3] | |
inC = weight.shape[1] | |
p = (kernel.shape[0] - factor) - (convW - 1) | |
stride = (factor, factor) | |
# Determine data dimensions. | |
stride = [1, 1, factor, factor] | |
output_shape = ((x.shape[2] - 1) * factor + convH, (x.shape[3] - 1) * factor + convW) | |
output_padding = ( | |
output_shape[0] - (x.shape[2] - 1) * stride[0] - convH, | |
output_shape[1] - (x.shape[3] - 1) * stride[1] - convW, | |
) | |
assert output_padding[0] >= 0 and output_padding[1] >= 0 | |
inC = weight.shape[1] | |
num_groups = x.shape[1] // inC | |
# Transpose weights. | |
weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW)) | |
weight = weight[..., ::-1, ::-1].permute(0, 2, 1, 3, 4) | |
weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW)) | |
x = F.conv_transpose2d(x, weight, stride=stride, output_padding=output_padding, padding=0) | |
x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), pad=((p + 1) // 2 + factor - 1, p // 2 + 1)) | |
else: | |
p = kernel.shape[0] - factor | |
x = upfirdn2d_native( | |
x, torch.tensor(kernel, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2) | |
) | |
return x | |
def forward(self, x): | |
if self.use_conv: | |
height = self._upsample_2d(x, self.Conv2d_0.weight, kernel=self.fir_kernel) | |
height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1) | |
else: | |
height = self._upsample_2d(x, kernel=self.fir_kernel, factor=2) | |
return height | |
class FirDownsample2D(nn.Module): | |
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)): | |
super().__init__() | |
out_channels = out_channels if out_channels else channels | |
if use_conv: | |
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.fir_kernel = fir_kernel | |
self.use_conv = use_conv | |
self.out_channels = out_channels | |
def _downsample_2d(self, x, weight=None, kernel=None, factor=2, gain=1): | |
"""Fused `Conv2d()` followed by `downsample_2d()`. | |
Args: | |
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more | |
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary: | |
order. | |
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. w: Weight tensor of the shape `[filterH, | |
filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // | |
numGroups`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * | |
factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain: | |
Scaling factor for signal magnitude (default: 1.0). | |
Returns: | |
Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same | |
datatype as `x`. | |
""" | |
assert isinstance(factor, int) and factor >= 1 | |
if kernel is None: | |
kernel = [1] * factor | |
# setup kernel | |
kernel = np.asarray(kernel, dtype=np.float16) | |
if kernel.ndim == 1: | |
kernel = np.outer(kernel, kernel) | |
kernel /= np.sum(kernel) | |
kernel = kernel * gain | |
if self.use_conv: | |
_, _, convH, convW = weight.shape | |
p = (kernel.shape[0] - factor) + (convW - 1) | |
s = [factor, factor] | |
x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), pad=((p + 1) // 2, p // 2)) | |
x = F.conv2d(x, weight, stride=s, padding=0) | |
else: | |
p = kernel.shape[0] - factor | |
x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), down=factor, pad=((p + 1) // 2, p // 2)) | |
return x | |
def forward(self, x): | |
if self.use_conv: | |
x = self._downsample_2d(x, weight=self.Conv2d_0.weight, kernel=self.fir_kernel) | |
x = x + self.Conv2d_0.bias.reshape(1, -1, 1, 1) | |
else: | |
x = self._downsample_2d(x, kernel=self.fir_kernel, factor=2) | |
return x | |
class ResnetBlock2D(nn.Module): | |
def __init__( | |
self, | |
*, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout=0.0, | |
temb_channels=512, | |
groups=32, | |
groups_out=None, | |
pre_norm=True, | |
eps=1e-6, | |
non_linearity="swish", | |
time_embedding_norm="default", | |
kernel=None, | |
output_scale_factor=1.0, | |
use_nin_shortcut=None, | |
up=False, | |
down=False, | |
): | |
super().__init__() | |
self.pre_norm = pre_norm | |
self.pre_norm = True | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.time_embedding_norm = time_embedding_norm | |
self.up = up | |
self.down = down | |
self.output_scale_factor = output_scale_factor | |
if groups_out is None: | |
groups_out = groups | |
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if temb_channels is not None: | |
self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels) | |
else: | |
self.time_emb_proj = None | |
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if non_linearity == "swish": | |
self.nonlinearity = lambda x: F.silu(x) | |
elif non_linearity == "mish": | |
self.nonlinearity = Mish() | |
elif non_linearity == "silu": | |
self.nonlinearity = nn.SiLU() | |
self.upsample = self.downsample = None | |
if self.up: | |
if kernel == "fir": | |
fir_kernel = (1, 3, 3, 1) | |
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) | |
elif kernel == "sde_vp": | |
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") | |
else: | |
self.upsample = Upsample2D(in_channels, use_conv=False) | |
elif self.down: | |
if kernel == "fir": | |
fir_kernel = (1, 3, 3, 1) | |
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) | |
elif kernel == "sde_vp": | |
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) | |
else: | |
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") | |
self.use_nin_shortcut = self.in_channels != self.out_channels if use_nin_shortcut is None else use_nin_shortcut | |
self.conv_shortcut = None | |
if self.use_nin_shortcut: | |
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, x, temb): | |
hidden_states = x | |
# make sure hidden states is in float32 | |
# when running in half-precision | |
hidden_states = self.norm1(hidden_states).type(hidden_states.dtype) | |
hidden_states = self.nonlinearity(hidden_states) | |
if self.upsample is not None: | |
x = self.upsample(x) | |
hidden_states = self.upsample(hidden_states) | |
elif self.downsample is not None: | |
x = self.downsample(x) | |
hidden_states = self.downsample(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if temb is not None: | |
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] | |
hidden_states = hidden_states + temb | |
# make sure hidden states is in float32 | |
# when running in half-precision | |
hidden_states = self.norm2(hidden_states).type(hidden_states.dtype) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
x = self.conv_shortcut(x) | |
out = (x + hidden_states) / self.output_scale_factor | |
return out | |
class Mish(torch.nn.Module): | |
def forward(self, x): | |
return x * torch.tanh(torch.nn.functional.softplus(x)) | |
def upsample_2d(x, kernel=None, factor=2, gain=1): | |
r"""Upsample2D a batch of 2D images with the given filter. | |
Args: | |
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given | |
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified | |
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a: | |
multiple of the upsampling factor. | |
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, | |
C]`. | |
k: FIR filter of the shape `[firH, firW]` or `[firN]` | |
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. | |
factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). | |
Returns: | |
Tensor of the shape `[N, C, H * factor, W * factor]` | |
""" | |
assert isinstance(factor, int) and factor >= 1 | |
if kernel is None: | |
kernel = [1] * factor | |
kernel = np.asarray(kernel, dtype=np.float16) | |
if kernel.ndim == 1: | |
kernel = np.outer(kernel, kernel) | |
kernel /= np.sum(kernel) | |
kernel = kernel * (gain * (factor**2)) | |
p = kernel.shape[0] - factor | |
return upfirdn2d_native( | |
x, torch.tensor(kernel, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2) | |
) | |
def downsample_2d(x, kernel=None, factor=2, gain=1): | |
r"""Downsample2D a batch of 2D images with the given filter. | |
Args: | |
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the | |
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the | |
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its | |
shape is a multiple of the downsampling factor. | |
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, | |
C]`. | |
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` | |
(separable). The default is `[1] * factor`, which corresponds to average pooling. | |
factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). | |
Returns: | |
Tensor of the shape `[N, C, H // factor, W // factor]` | |
""" | |
assert isinstance(factor, int) and factor >= 1 | |
if kernel is None: | |
kernel = [1] * factor | |
kernel = np.asarray(kernel, dtype=np.float16) | |
if kernel.ndim == 1: | |
kernel = np.outer(kernel, kernel) | |
kernel /= np.sum(kernel) | |
kernel = kernel * gain | |
p = kernel.shape[0] - factor | |
return upfirdn2d_native(x, torch.tensor(kernel, device=x.device), down=factor, pad=((p + 1) // 2, p // 2)) | |
def upfirdn2d_native(input, kernel, up=1, down=1, pad=(0, 0)): | |
up_x = up_y = up | |
down_x = down_y = down | |
pad_x0 = pad_y0 = pad[0] | |
pad_x1 = pad_y1 = pad[1] | |
_, channel, in_h, in_w = input.shape | |
input = input.reshape(-1, in_h, in_w, 1) | |
_, in_h, in_w, minor = input.shape | |
kernel_h, kernel_w = kernel.shape | |
out = input.view(-1, in_h, 1, in_w, 1, minor) | |
# Temporary workaround for mps specific issue: https://github.com/pytorch/pytorch/issues/84535 | |
if input.device.type == "mps": | |
out = out.to("cpu") | |
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) | |
out = out.view(-1, in_h * up_y, in_w * up_x, minor) | |
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) | |
out = out.to(input.device) # Move back to mps if necessary | |
out = out[ | |
:, | |
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), | |
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), | |
:, | |
] | |
out = out.permute(0, 3, 1, 2) | |
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) | |
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) | |
out = F.conv2d(out, w) | |
out = out.reshape( | |
-1, | |
minor, | |
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, | |
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, | |
) | |
out = out.permute(0, 2, 3, 1) | |
out = out[:, ::down_y, ::down_x, :] | |
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 | |
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 | |
return out.view(-1, channel, out_h, out_w) | |