EDICT / my_diffusers /schedulers /scheduling_utils.py
root
secret auth
d77a781
raw
history blame
4.45 kB
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Union
import numpy as np
import torch
from ..utils import BaseOutput
SCHEDULER_CONFIG_NAME = "scheduler_config.json"
@dataclass
class SchedulerOutput(BaseOutput):
"""
Base class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: torch.FloatTensor
class SchedulerMixin:
"""
Mixin containing common functions for the schedulers.
"""
config_name = SCHEDULER_CONFIG_NAME
ignore_for_config = ["tensor_format"]
def set_format(self, tensor_format="pt"):
self.tensor_format = tensor_format
if tensor_format == "pt":
for key, value in vars(self).items():
if isinstance(value, np.ndarray):
setattr(self, key, torch.from_numpy(value))
return self
def clip(self, tensor, min_value=None, max_value=None):
tensor_format = getattr(self, "tensor_format", "pt")
if tensor_format == "np":
return np.clip(tensor, min_value, max_value)
elif tensor_format == "pt":
return torch.clamp(tensor, min_value, max_value)
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
def log(self, tensor):
tensor_format = getattr(self, "tensor_format", "pt")
if tensor_format == "np":
return np.log(tensor)
elif tensor_format == "pt":
return torch.log(tensor)
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
def match_shape(self, values: Union[np.ndarray, torch.Tensor], broadcast_array: Union[np.ndarray, torch.Tensor]):
"""
Turns a 1-D array into an array or tensor with len(broadcast_array.shape) dims.
Args:
values: an array or tensor of values to extract.
broadcast_array: an array with a larger shape of K dimensions with the batch
dimension equal to the length of timesteps.
Returns:
a tensor of shape [batch_size, 1, ...] where the shape has K dims.
"""
tensor_format = getattr(self, "tensor_format", "pt")
values = values.flatten()
while len(values.shape) < len(broadcast_array.shape):
values = values[..., None]
if tensor_format == "pt":
values = values.to(broadcast_array.device)
return values
def norm(self, tensor):
tensor_format = getattr(self, "tensor_format", "pt")
if tensor_format == "np":
return np.linalg.norm(tensor)
elif tensor_format == "pt":
return torch.norm(tensor.reshape(tensor.shape[0], -1), dim=-1).mean()
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
def randn_like(self, tensor, generator=None):
tensor_format = getattr(self, "tensor_format", "pt")
if tensor_format == "np":
return np.random.randn(*np.shape(tensor))
elif tensor_format == "pt":
# return torch.randn_like(tensor)
return torch.randn(tensor.shape, layout=tensor.layout, generator=generator).to(tensor.device)
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
def zeros_like(self, tensor):
tensor_format = getattr(self, "tensor_format", "pt")
if tensor_format == "np":
return np.zeros_like(tensor)
elif tensor_format == "pt":
return torch.zeros_like(tensor)
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")