Spaces:
Runtime error
Runtime error
Dongxu Li
commited on
Commit
·
8f68280
1
Parent(s):
30474d6
add generation options.
Browse files- .gitattributes +2 -0
- app.py +140 -73
- house.png +3 -0
- sunset.png +3 -0
- utils.py +24 -0
.gitattributes
CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
36 |
+
house.png filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
-
from
|
2 |
|
3 |
-
import
|
4 |
-
import json
|
5 |
import gradio as gr
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
-
from io import BytesIO
|
9 |
-
|
10 |
def encode_image(image):
|
11 |
buffered = BytesIO()
|
12 |
image.save(buffered, format="JPEG")
|
@@ -15,16 +15,19 @@ def encode_image(image):
|
|
15 |
return buffered
|
16 |
|
17 |
|
18 |
-
def query_api(image, prompt, decoding_method):
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
}
|
25 |
|
26 |
-
data = {"prompt": prompt, "use_nucleus_sampling": decoding_method == "Nucleus sampling"}
|
27 |
-
|
28 |
image = encode_image(image)
|
29 |
files = {"image": image}
|
30 |
|
@@ -36,80 +39,144 @@ def query_api(image, prompt, decoding_method):
|
|
36 |
return "Error: " + response.text
|
37 |
|
38 |
|
39 |
-
def
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
def prepend_answer(text):
|
46 |
-
text = text.strip().lower()
|
47 |
|
48 |
-
return
|
49 |
|
50 |
|
51 |
-
def
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
def postp_answer(text):
|
64 |
-
if text.startswith("answer: "):
|
65 |
-
return text[8:]
|
66 |
-
elif text.startswith("a: "):
|
67 |
-
return text[2:]
|
68 |
-
else:
|
69 |
-
return text
|
70 |
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
elif text.startswith("q: "):
|
76 |
-
text = text[2:]
|
77 |
-
|
78 |
-
if not text.endswith("?"):
|
79 |
-
text += "?"
|
80 |
-
|
81 |
-
return text
|
82 |
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
text_input = prep_question(text_input)
|
86 |
-
history.append(text_input)
|
87 |
|
88 |
-
# prompt = '\n'.join(history)
|
89 |
-
prompt = get_prompt_from_history(history)
|
90 |
-
# print("prompt: " + prompt)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
history += output
|
95 |
-
|
96 |
-
chat = [(history[i], history[i+1]) for i in range(0, len(history)-1, 2)] # convert to tuples of list
|
97 |
-
|
98 |
-
return chat, history
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
-
|
102 |
-
gr.inputs.Textbox(lines=2, label="Text input"),
|
103 |
-
gr.inputs.Radio(choices=['Nucleus sampling','Beam search'], type="value", default="Nucleus sampling", label="Text Decoding Method"),
|
104 |
-
"state",
|
105 |
-
]
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
title = "BLIP-2"
|
110 |
description = """Gradio demo for BLIP-2, a multimodal chatbot from Salesforce Research. To use it, simply upload your image, or click one of the examples to load them. Please visit our <a href='https://github.com/salesforce/LAVIS/tree/main/projects/blip2' target='_blank'>project webpage</a>.</p>
|
111 |
<p> <strong>Disclaimer</strong>: This is a research prototype and is not intended for production use. No data including but not restricted to text and images is collected. </p>"""
|
112 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models</a>"
|
113 |
|
114 |
-
iface = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article)
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
|
3 |
+
import string
|
|
|
4 |
import gradio as gr
|
5 |
+
import requests
|
6 |
+
from PIL import Image
|
7 |
+
from utils import Endpoint
|
8 |
|
9 |
|
|
|
|
|
10 |
def encode_image(image):
|
11 |
buffered = BytesIO()
|
12 |
image.save(buffered, format="JPEG")
|
|
|
15 |
return buffered
|
16 |
|
17 |
|
18 |
+
def query_api(image, prompt, decoding_method, temperature, len_penalty, repetition_penalty):
|
19 |
+
url = endpoint.url
|
20 |
+
|
21 |
+
headers = {"User-Agent": "BLIP-2 HuggingFace Space"}
|
22 |
|
23 |
+
data = {
|
24 |
+
"prompt": prompt,
|
25 |
+
"use_nucleus_sampling": decoding_method == "Nucleus sampling",
|
26 |
+
"temperature": temperature,
|
27 |
+
"length_penalty": len_penalty,
|
28 |
+
"repetition_penalty": repetition_penalty,
|
29 |
}
|
30 |
|
|
|
|
|
31 |
image = encode_image(image)
|
32 |
files = {"image": image}
|
33 |
|
|
|
39 |
return "Error: " + response.text
|
40 |
|
41 |
|
42 |
+
def postprocess_output(output):
|
43 |
+
# if last character is not a punctuation, add a full stop
|
44 |
+
if not output[0][-1] in string.punctuation:
|
45 |
+
output[0] += "."
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
return output
|
48 |
|
49 |
|
50 |
+
def inference(
|
51 |
+
image,
|
52 |
+
text_input,
|
53 |
+
decoding_method,
|
54 |
+
temperature,
|
55 |
+
length_penalty,
|
56 |
+
repetition_penalty,
|
57 |
+
history=[],
|
58 |
+
):
|
59 |
+
text_input = text_input
|
60 |
+
history.append(text_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
prompt = " ".join(history)
|
63 |
|
64 |
+
output = query_api(image, prompt, decoding_method, temperature, length_penalty, repetition_penalty)
|
65 |
+
output = postprocess_output(output)
|
66 |
+
history += output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
chat = [
|
69 |
+
(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)
|
70 |
+
] # convert to tuples of list
|
71 |
|
72 |
+
return chat, history
|
|
|
|
|
73 |
|
|
|
|
|
|
|
74 |
|
75 |
+
# image source: https://m.facebook.com/112483753737319/photos/112489593736735/
|
76 |
+
endpoint = Endpoint()
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
examples = [
|
79 |
+
["house.png", "How could someone get out of the house?"],
|
80 |
+
[
|
81 |
+
"sunset.png",
|
82 |
+
"Write a romantic message that goes along this photo.",
|
83 |
+
],
|
84 |
+
]
|
85 |
|
86 |
+
# outputs = ["chatbot", "state"]
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
title = """<h1 align="center">BLIP-2</h1>"""
|
|
|
|
|
89 |
description = """Gradio demo for BLIP-2, a multimodal chatbot from Salesforce Research. To use it, simply upload your image, or click one of the examples to load them. Please visit our <a href='https://github.com/salesforce/LAVIS/tree/main/projects/blip2' target='_blank'>project webpage</a>.</p>
|
90 |
<p> <strong>Disclaimer</strong>: This is a research prototype and is not intended for production use. No data including but not restricted to text and images is collected. </p>"""
|
91 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models</a>"
|
92 |
|
93 |
+
# iface = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples)
|
94 |
+
|
95 |
+
|
96 |
+
def reset_all(text_input, image_input, chatbot, history):
|
97 |
+
return "", None, None, []
|
98 |
+
|
99 |
+
|
100 |
+
def reset_chatbot(chatbot, history):
|
101 |
+
return None, []
|
102 |
+
|
103 |
+
|
104 |
+
with gr.Blocks() as iface:
|
105 |
+
state = gr.State([])
|
106 |
+
|
107 |
+
gr.Markdown(title)
|
108 |
+
gr.Markdown(description)
|
109 |
+
gr.Markdown(article)
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column():
|
112 |
+
image_input = gr.Image(type="pil")
|
113 |
+
text_input = gr.Textbox(lines=2, label="Text input")
|
114 |
+
|
115 |
+
sampling = gr.Radio(
|
116 |
+
choices=["Beam search", "Nucleus sampling"],
|
117 |
+
value="Beam search",
|
118 |
+
label="Text Decoding Method",
|
119 |
+
interactive=True,
|
120 |
+
)
|
121 |
+
|
122 |
+
with gr.Row():
|
123 |
+
temperature = gr.Slider(
|
124 |
+
minimum=0.5,
|
125 |
+
maximum=1.0,
|
126 |
+
value=0.8,
|
127 |
+
interactive=True,
|
128 |
+
label="Temperature",
|
129 |
+
)
|
130 |
+
|
131 |
+
len_penalty = gr.Slider(
|
132 |
+
minimum=-2.0,
|
133 |
+
maximum=2.0,
|
134 |
+
value=1.0,
|
135 |
+
step=0.5,
|
136 |
+
interactive=True,
|
137 |
+
label="Length Penalty",
|
138 |
+
)
|
139 |
+
|
140 |
+
rep_penalty = gr.Slider(
|
141 |
+
minimum=1.0,
|
142 |
+
maximum=10.0,
|
143 |
+
value=1.0,
|
144 |
+
step=0.5,
|
145 |
+
interactive=True,
|
146 |
+
label="Repetition Penalty",
|
147 |
+
)
|
148 |
+
|
149 |
+
with gr.Column():
|
150 |
+
chatbot = gr.Chatbot()
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
clear_button = gr.Button(value="Clear", interactive=True)
|
154 |
+
clear_button.click(
|
155 |
+
reset_all,
|
156 |
+
[text_input, image_input, chatbot, state],
|
157 |
+
[text_input, image_input, chatbot, state],
|
158 |
+
)
|
159 |
+
|
160 |
+
submit_button = gr.Button(value="Submit", interactive=True, variant="primary")
|
161 |
+
submit_button.click(
|
162 |
+
inference,
|
163 |
+
[
|
164 |
+
image_input,
|
165 |
+
text_input,
|
166 |
+
sampling,
|
167 |
+
temperature,
|
168 |
+
len_penalty,
|
169 |
+
state,
|
170 |
+
],
|
171 |
+
[chatbot, state],
|
172 |
+
)
|
173 |
+
|
174 |
+
image_input.change(reset_chatbot, [chatbot, state], [chatbot, state])
|
175 |
+
|
176 |
+
examples = gr.Examples(
|
177 |
+
examples=examples,
|
178 |
+
inputs=[image_input, text_input],
|
179 |
+
)
|
180 |
+
|
181 |
+
iface.queue(concurrency_count=1)
|
182 |
+
iface.launch(enable_queue=True, debug=True)
|
house.png
ADDED
Git LFS Details
|
sunset.png
ADDED
Git LFS Details
|
utils.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
|
4 |
+
class Endpoint:
|
5 |
+
def __init__(self):
|
6 |
+
self.config_path = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/projects/blip2/config.json"
|
7 |
+
|
8 |
+
self._url = None
|
9 |
+
|
10 |
+
@property
|
11 |
+
def url(self):
|
12 |
+
if self._url is None:
|
13 |
+
self._url = self.get_url()
|
14 |
+
|
15 |
+
return self._url
|
16 |
+
|
17 |
+
def get_url(self):
|
18 |
+
response = requests.get(self.config_path)
|
19 |
+
config = response.json()
|
20 |
+
|
21 |
+
return config["endpoint"]
|
22 |
+
|
23 |
+
|
24 |
+
|