Spaces:
Build error
Build error
Ahsen Khaliq
commited on
Commit
•
e67e20f
1
Parent(s):
2ef97f1
Update app.py
Browse files
app.py
CHANGED
@@ -30,16 +30,38 @@ model = blip_decoder(pretrained=model_url, image_size=384, vit='base')
|
|
30 |
model.eval()
|
31 |
model = model.to(device)
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
inputs = gr.inputs.Image(type='pil')
|
43 |
outputs = gr.outputs.Textbox(label="Output")
|
44 |
|
45 |
title = "BLIP"
|
@@ -49,4 +71,4 @@ description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training f
|
|
49 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</a> | <a href='https://github.com/salesforce/BLIP' target='_blank'>Github Repo</a></p>"
|
50 |
|
51 |
|
52 |
-
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['starry.jpg']]).launch(enable_queue=True,cache_examples=True)
|
|
|
30 |
model.eval()
|
31 |
model = model.to(device)
|
32 |
|
33 |
+
|
34 |
+
from models.blip_vqa import blip_vqa
|
35 |
+
|
36 |
+
image_size_vq = 480
|
37 |
+
transform_vq = transforms.Compose([
|
38 |
+
transforms.Resize((image_size_vq,image_size_vq),interpolation=InterpolationMode.BICUBIC),
|
39 |
+
transforms.ToTensor(),
|
40 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
41 |
+
])
|
42 |
+
|
43 |
+
model_url_vq = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_vqa.pth'
|
44 |
|
45 |
+
model_vq = blip_vqa(pretrained=model_url_vq, image_size=480, vit='base')
|
46 |
+
model_vq.eval()
|
47 |
+
model_vq = model_vq.to(device)
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
def inference(raw_image, model, question):
|
52 |
+
if model == 'Image Captioning':
|
53 |
+
image = transform(raw_image).unsqueeze(0).to(device)
|
54 |
+
with torch.no_grad():
|
55 |
+
caption = model.generate(image, sample=False, num_beams=3, max_length=20, min_length=5)
|
56 |
+
return 'caption: '+caption[0]
|
57 |
|
58 |
+
else:
|
59 |
+
image_vq = transform_vq(raw_image).unsqueeze(0).to(device)
|
60 |
+
with torch.no_grad():
|
61 |
+
answer = model(image_vq, question, train=False, inference='generate')
|
62 |
+
return 'answer: '+answer[0]
|
63 |
|
64 |
+
inputs = [gr.inputs.Image(type='pil'),gr.inputs.Radio(choices=['Image Captioning',"Visual Question Answering"], type="value", default="Image Captioning", label="Model"),"textbox"]
|
65 |
outputs = gr.outputs.Textbox(label="Output")
|
66 |
|
67 |
title = "BLIP"
|
|
|
71 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</a> | <a href='https://github.com/salesforce/BLIP' target='_blank'>Github Repo</a></p>"
|
72 |
|
73 |
|
74 |
+
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['starry.jpg',"Image Captioning",""]]).launch(enable_queue=True,cache_examples=True)
|