BLIP / app.py
merve's picture
merve HF staff
Improve description for general audience
e39ff4b
raw
history blame
3.32 kB
from PIL import Image
import requests
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
import gradio as gr
from models.blip import blip_decoder
image_size = 384
transform = transforms.Compose([
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth'
model = blip_decoder(pretrained=model_url, image_size=384, vit='large')
model.eval()
model = model.to(device)
from models.blip_vqa import blip_vqa
image_size_vq = 480
transform_vq = transforms.Compose([
transforms.Resize((image_size_vq,image_size_vq),interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
model_url_vq = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_vqa.pth'
model_vq = blip_vqa(pretrained=model_url_vq, image_size=480, vit='base')
model_vq.eval()
model_vq = model_vq.to(device)
def inference(raw_image, model_n, question, strategy):
if model_n == 'Image Captioning':
image = transform(raw_image).unsqueeze(0).to(device)
with torch.no_grad():
if strategy == "Beam search":
caption = model.generate(image, sample=False, num_beams=3, max_length=20, min_length=5)
else:
caption = model.generate(image, sample=True, top_p=0.9, max_length=20, min_length=5)
return 'caption: '+caption[0]
else:
image_vq = transform_vq(raw_image).unsqueeze(0).to(device)
with torch.no_grad():
answer = model_vq(image_vq, question, train=False, inference='generate')
return 'answer: '+answer[0]
inputs = [gr.inputs.Image(type='pil'),gr.inputs.Radio(choices=['Image Captioning',"Visual Question Answering"], type="value", default="Image Captioning", label="Task"),gr.inputs.Textbox(lines=2, label="Question"),gr.inputs.Radio(choices=['Beam search','Nucleus sampling'], type="value", default="Nucleus sampling", label="Caption Decoding Strategy")]
outputs = gr.outputs.Textbox(label="Output")
title = "BLIP"
description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research). This application can caption images or answer questions from a given image. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</a> | <a href='https://github.com/salesforce/BLIP' target='_blank'>Github Repo</a></p>"
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['starrynight.jpeg',"Image Captioning","None","Nucleus sampling"]]).launch(enable_queue=True)