Sakil commited on
Commit
f4b77bb
·
1 Parent(s): 261b665

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -3
app.py CHANGED
@@ -9,6 +9,7 @@ from collections import Counter
9
  import numpy as np
10
  from transformers import pipeline
11
  classifier = pipeline('sentiment-analysis')
 
12
  #hashtag_phrase ="#datascience"
13
  #recent_tweet_count_you_want =100
14
  def search_hashtag1(hashtag_phrase,recent_tweet_count_you_want):
@@ -48,14 +49,18 @@ def search_hashtag1(hashtag_phrase,recent_tweet_count_you_want):
48
  q=[p[i]['label'] for i in range(len(p))]
49
  data10=pd.DataFrame(q,columns={"sentiment"})
50
  data_tweet_final=pd.concat([data6,data10],axis=1)
51
- data_tweet_final.to_csv("tweet_data2.csv")
 
 
 
 
52
  #data6.to_csv("tweet_data1.csv")
53
  #data6=data5.head(10)
54
- return data_tweet_final
55
  iface = gr.Interface(
56
  search_hashtag1,inputs=["text","number"],
57
  outputs="dataframe",
58
- examples=[["#datascience",10],["#valentine's day",100],["#pushpa",200],["#budget",500],["#sharktankindia",300]],
59
  theme="seafoam",
60
  title='Sakil Tweetlib6 App',
61
  description="You can extract tweets based on Hashtag.e.g. Please enter #datascience. The app extracts tweets based on the hashtag and the number of tweet count you want.")
 
9
  import numpy as np
10
  from transformers import pipeline
11
  classifier = pipeline('sentiment-analysis')
12
+ summarizer= pipeline("summarization", max_length=10)
13
  #hashtag_phrase ="#datascience"
14
  #recent_tweet_count_you_want =100
15
  def search_hashtag1(hashtag_phrase,recent_tweet_count_you_want):
 
49
  q=[p[i]['label'] for i in range(len(p))]
50
  data10=pd.DataFrame(q,columns={"sentiment"})
51
  data_tweet_final=pd.concat([data6,data10],axis=1)
52
+ p_summarize_label = [i for i in summarizer(tweet_list)]
53
+ q_summarize=[p_summarize_label[i]['summary_text'] for i in range(len(p_summarize_label))]
54
+ data_summarize=pd.DataFrame(q_summarize,columns={"summarized_tweets"})
55
+ data_tweet_summarize_final=pd.concat([data_tweet_final,data_summarize],axis=1)
56
+ data_tweet_summarize_final.to_csv("tweet_data2.csv")
57
  #data6.to_csv("tweet_data1.csv")
58
  #data6=data5.head(10)
59
+ return data_tweet_summarize_final
60
  iface = gr.Interface(
61
  search_hashtag1,inputs=["text","number"],
62
  outputs="dataframe",
63
+ examples=[["#datascience",5],["#valentine's day",10],["#pushpa",15],["#budget",20],["#sharktankindia",30]],
64
  theme="seafoam",
65
  title='Sakil Tweetlib6 App',
66
  description="You can extract tweets based on Hashtag.e.g. Please enter #datascience. The app extracts tweets based on the hashtag and the number of tweet count you want.")