Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
|
| 3 |
+
from langchain import PromptTemplate
|
| 4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 5 |
+
from langchain.vectorstores import FAISS
|
| 6 |
+
from langchain.llms import CTransformers
|
| 7 |
+
from langchain.chains import RetrievalQA
|
| 8 |
+
import chainlit as cl
|
| 9 |
+
|
| 10 |
+
DB_FAISS_PATH = 'vectorstore/db_faiss'
|
| 11 |
+
|
| 12 |
+
custom_prompt_template = """Use the following pieces of information to answer the user's question.
|
| 13 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
| 14 |
+
Context: {context}
|
| 15 |
+
Question: {question}
|
| 16 |
+
Only return the helpful answer below and nothing else.
|
| 17 |
+
Helpful answer:
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
def set_custom_prompt():
|
| 21 |
+
"""
|
| 22 |
+
Prompt template for QA retrieval for each vectorstore
|
| 23 |
+
"""
|
| 24 |
+
prompt = PromptTemplate(template=custom_prompt_template,
|
| 25 |
+
input_variables=['context', 'question'])
|
| 26 |
+
return prompt
|
| 27 |
+
|
| 28 |
+
# Retrieval QA Chain
|
| 29 |
+
def retrieval_qa_chain(llm, prompt, db):
|
| 30 |
+
qa_chain = RetrievalQA.from_chain_type(llm=llm,
|
| 31 |
+
chain_type='stuff',
|
| 32 |
+
retriever=db.as_retriever(search_kwargs={'k': 2}),
|
| 33 |
+
return_source_documents=True,
|
| 34 |
+
chain_type_kwargs={'prompt': prompt}
|
| 35 |
+
)
|
| 36 |
+
return qa_chain
|
| 37 |
+
|
| 38 |
+
# Loading the model
|
| 39 |
+
def load_llm():
|
| 40 |
+
# Load the locally downloaded model here
|
| 41 |
+
llm = CTransformers(
|
| 42 |
+
model="llama-2-7b-chat.ggmlv3.q8_0.bin",
|
| 43 |
+
model_type="llama",
|
| 44 |
+
max_new_tokens=512,
|
| 45 |
+
temperature=0.5
|
| 46 |
+
)
|
| 47 |
+
return llm
|
| 48 |
+
|
| 49 |
+
# QA Model Function
|
| 50 |
+
def qa_bot():
|
| 51 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 52 |
+
model_kwargs={'device': 'cpu'})
|
| 53 |
+
db = FAISS.load_local(DB_FAISS_PATH, embeddings)
|
| 54 |
+
llm = load_llm()
|
| 55 |
+
qa_prompt = set_custom_prompt()
|
| 56 |
+
qa = retrieval_qa_chain(llm, qa_prompt, db)
|
| 57 |
+
|
| 58 |
+
return qa
|
| 59 |
+
|
| 60 |
+
def main():
|
| 61 |
+
st.title("AI ChatBot LLM")
|
| 62 |
+
|
| 63 |
+
qa_result = qa_bot()
|
| 64 |
+
|
| 65 |
+
user_input = st.text_input("Enter your question:")
|
| 66 |
+
|
| 67 |
+
if st.button("Ask"):
|
| 68 |
+
response = qa_result({'query': user_input})
|
| 69 |
+
answer = response["result"]
|
| 70 |
+
sources = response["source_documents"]
|
| 71 |
+
|
| 72 |
+
st.write("Answer:", answer)
|
| 73 |
+
if sources:
|
| 74 |
+
st.write("Sources:", sources)
|
| 75 |
+
else:
|
| 76 |
+
st.write("No sources found")
|
| 77 |
+
|
| 78 |
+
if __name__ == "__main__":
|
| 79 |
+
main()
|