|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
model_name = "Sakalti/iturkaAI-large" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, ignore_mismatched_sizes=True) |
|
|
|
|
|
def respond(message, history, max_tokens, temperature, top_p): |
|
|
|
if history is None: |
|
history = [] |
|
|
|
input_text = "" |
|
for user_message, bot_response in history: |
|
input_text += f"User: {user_message}\nAssistant: {bot_response}\n" |
|
input_text += f"User: {message}\nAssistant:" |
|
|
|
|
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
inputs.input_ids, |
|
max_length=inputs.input_ids.shape[1] + max_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
temperature=temperature, |
|
) |
|
|
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
response = response.split("Assistant:")[-1].strip() |
|
|
|
|
|
history.append((message, response)) |
|
return response, history |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## AIチャット") |
|
chatbot = gr.Chatbot() |
|
msg = gr.Textbox(label="あなたのメッセージ", placeholder="ここにメッセージを入力...") |
|
max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max new tokens") |
|
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature") |
|
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") |
|
send_button = gr.Button("送信") |
|
clear = gr.Button("クリア") |
|
|
|
def clear_history(): |
|
return [], [] |
|
|
|
send_button.click(respond, inputs=[msg, chatbot, max_tokens, temperature, top_p], outputs=[chatbot, chatbot]) |
|
clear.click(clear_history, outputs=[chatbot]) |
|
|
|
demo.launch() |