Persian-ASR / app.py
SajjadAyoubi's picture
Create app.py
c71fd53
raw
history blame
1.91 kB
#Importing all the necessary packages
import torch, librosa, torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from pyctcdecode import build_ctcdecoder
# Define ASR MODEL
class Speech2Text:
def __init__(self):
self.vocab = list(processor.tokenizer.get_vocab().keys())
self.decoder = build_ctcdecoder(self.vocab, kenlm_model_path=None)
def wav2feature(self, path):
speech_array, sampling_rate = torchaudio.load(path)
speech_array = librosa.resample(speech_array.squeeze().numpy(),
sampling_rate, processor.feature_extractor.sampling_rate)
return processor(speech_array, return_tensors="pt",
sampling_rate=processor.feature_extractor.sampling_rate)
def feature2logits(self, features):
with torch.no_grad():
return model(features.input_values.to(device),
attention_mask=features.attention_mask.to(device)).logits.numpy()[0]
def __call__(self, path):
logits = self.feature2logits(self.wav2feature(path))
return self.decoder.decode(logits)
#Loading the model and the tokenizer
model_name = 'masoudmzb/wav2vec2-xlsr-multilingual-53-fa'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
wav2vec_model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device).eval()
processor = Wav2Vec2Processor.from_pretrained(model_name)
s2t = Speech2Text()
gr.Interface(s2t,
inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Record Your Beautiful Persian Voice"),
outputs = gr.outputs.Textbox(label="Output Text"),
title="Persian ASR using Wav2Vec 2.0",
description = "This application displays transcribed text for given audio input",
examples = [["Test_File1.wav"]], theme="grass").launch()