Spaces:
Runtime error
Runtime error
#Importing all the necessary packages | |
import torch, librosa, torchaudio | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
from pyctcdecode import build_ctcdecoder | |
# Define ASR MODEL | |
class Speech2Text: | |
def __init__(self): | |
self.vocab = list(processor.tokenizer.get_vocab().keys()) | |
self.decoder = build_ctcdecoder(self.vocab, kenlm_model_path=None) | |
def wav2feature(self, path): | |
speech_array, sampling_rate = torchaudio.load(path) | |
speech_array = librosa.resample(speech_array.squeeze().numpy(), | |
sampling_rate, processor.feature_extractor.sampling_rate) | |
return processor(speech_array, return_tensors="pt", | |
sampling_rate=processor.feature_extractor.sampling_rate) | |
def feature2logits(self, features): | |
with torch.no_grad(): | |
return model(features.input_values.to(device), | |
attention_mask=features.attention_mask.to(device)).logits.numpy()[0] | |
def __call__(self, path): | |
logits = self.feature2logits(self.wav2feature(path)) | |
return self.decoder.decode(logits) | |
#Loading the model and the tokenizer | |
model_name = 'masoudmzb/wav2vec2-xlsr-multilingual-53-fa' | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
wav2vec_model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device).eval() | |
processor = Wav2Vec2Processor.from_pretrained(model_name) | |
s2t = Speech2Text() | |
gr.Interface(s2t, | |
inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Record Your Beautiful Persian Voice"), | |
outputs = gr.outputs.Textbox(label="Output Text"), | |
title="Persian ASR using Wav2Vec 2.0", | |
description = "This application displays transcribed text for given audio input", | |
examples = [["Test_File1.wav"]], theme="grass").launch() |