Food_Extractor / app.py
SajadAhmadRather's picture
Update app.py
5fdb962 verified
### 1. Imports and class names setup ###
import gradio as gr
import os
import torch
from pathlib import Path
from zipfile import ZipFile
from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple, Dict
# Setup class names
class_names = ['pizza', 'steak', 'sushi']
### 2. Handle examples.zip ###
# Define the zip file and the target extraction folder
zip_file_path = Path("examples.zip")
extracted_folder_path = Path("examples")
# Extract .zip file if it exists and is not already extracted
if zip_file_path.exists() and not extracted_folder_path.exists():
print(f"Extracting {zip_file_path} to {extracted_folder_path}...")
with ZipFile(zip_file_path, "r") as zf:
zf.extractall(extracted_folder_path)
print(f"Extraction complete. Files extracted to {extracted_folder_path}.")
else:
print(f"ZIP file not found or examples folder already exists.")
### 3. Model and transforms preparation ###
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3)
# Load saved weights
effnetb2.load_state_dict(
torch.load(
f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
map_location=torch.device("cpu") # Load the model to the CPU
)
)
### 4. Predict function ###
def predict(img) -> Tuple[Dict, float]:
# Start a timer
start_time = timer()
# Transform the input image for use with EffNetB2
img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th index
# Put model into eval mode, make prediction
effnetb2.eval()
with torch.inference_mode():
# Pass transformed image through the model and turn the prediction logits into probabilities
pred_probs = torch.softmax(effnetb2(img), dim=1)
# Create a prediction label and prediction probability dictionary
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
# Calculate prediction time
end_time = timer()
pred_time = round(end_time - start_time, 4)
# Return pred dict and pred time
return pred_labels_and_probs, pred_time
### 5. Gradio app ###
# Create title, description, and article
title = "Food Extractor ๐Ÿ•๐Ÿฅฉ๐Ÿฃ"
description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model to classify images as pizza, steak or sushi."
article = "Created by [Prof. Sajad Ahmad Rather, IIT Roorkee, PARIMAL LAB](https://github.com/SajadAHMAD1)."
# Create example list
example_list = [[str(filepath)] for filepath in extracted_folder_path.glob("*")] # Get all files in the examples folder
# Create the Gradio demo
demo = gr.Interface(fn=predict, # Maps inputs to outputs
inputs=gr.Image(type="pil"),
outputs=[gr.Label(num_top_classes=3, label="Predictions"),
gr.Number(label="Prediction time (s)")],
examples=example_list,
title=title,
description=description,
article=article)
# Launch the demo!
demo.launch(debug=False) # Don't need share=True in Hugging Face Spaces