Saibo-backup
commited on
Commit
·
92dde49
1
Parent(s):
5204c67
add json grammar constraint
Browse files- app.py +10 -2
- json_minimal.ebnf +16 -0
- requirements.txt +1 -0
app.py
CHANGED
@@ -2,6 +2,8 @@ import gradio as gr
|
|
2 |
|
3 |
from transformers import GPT2Tokenizer, AutoModelForCausalLM
|
4 |
import numpy as np
|
|
|
|
|
5 |
|
6 |
MODEL_NAME = "gpt2"
|
7 |
|
@@ -13,6 +15,12 @@ if __name__ == "__main__":
|
|
13 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
14 |
model.config.pad_token_id = model.config.eos_token_id
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Define your color-coding labels; if prob > x, then label = y; Sorted in descending probability order!
|
17 |
probs_to_label = [
|
18 |
(0.1, "p >= 10%"),
|
@@ -33,7 +41,7 @@ if __name__ == "__main__":
|
|
33 |
"""
|
34 |
inputs = tokenizer([prompt], return_tensors="pt")
|
35 |
outputs = model.generate(
|
36 |
-
**inputs, max_new_tokens=
|
37 |
)
|
38 |
# Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1)
|
39 |
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True)
|
@@ -72,7 +80,7 @@ if __name__ == "__main__":
|
|
72 |
|
73 |
with gr.Row():
|
74 |
with gr.Column():
|
75 |
-
prompt = gr.Textbox(label="Prompt", lines=3, value="
|
76 |
button = gr.Button(f"Generate with {MODEL_NAME}, using sampling!")
|
77 |
with gr.Column():
|
78 |
highlighted_text = gr.HighlightedText(
|
|
|
2 |
|
3 |
from transformers import GPT2Tokenizer, AutoModelForCausalLM
|
4 |
import numpy as np
|
5 |
+
from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
|
6 |
+
from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
|
7 |
|
8 |
MODEL_NAME = "gpt2"
|
9 |
|
|
|
15 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
16 |
model.config.pad_token_id = model.config.eos_token_id
|
17 |
|
18 |
+
# Load json grammar
|
19 |
+
with open("json_minimal.ebnf", "r") as file:
|
20 |
+
grammar_str = file.read()
|
21 |
+
grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer)
|
22 |
+
grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
|
23 |
+
|
24 |
# Define your color-coding labels; if prob > x, then label = y; Sorted in descending probability order!
|
25 |
probs_to_label = [
|
26 |
(0.1, "p >= 10%"),
|
|
|
41 |
"""
|
42 |
inputs = tokenizer([prompt], return_tensors="pt")
|
43 |
outputs = model.generate(
|
44 |
+
**inputs, max_new_tokens=20, return_dict_in_generate=True, output_scores=True, logits_processor=[grammar_processor]
|
45 |
)
|
46 |
# Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1)
|
47 |
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True)
|
|
|
80 |
|
81 |
with gr.Row():
|
82 |
with gr.Column():
|
83 |
+
prompt = gr.Textbox(label="Prompt", lines=3, value="This is a valid json string for http request:")
|
84 |
button = gr.Button(f"Generate with {MODEL_NAME}, using sampling!")
|
85 |
with gr.Column():
|
86 |
highlighted_text = gr.HighlightedText(
|
json_minimal.ebnf
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
root ::= object
|
4 |
+
|
5 |
+
object ::= " {" ws ( string ":" ws value ("," ws string ":" ws value)* )? ws "}"
|
6 |
+
|
7 |
+
value ::= object | array | string | number | ("true" | "false" | "null") ws
|
8 |
+
|
9 |
+
array ::= "[" ws ( value ("," ws value)* )? "]" ws
|
10 |
+
|
11 |
+
string ::= "\"" [a-zA-Z0-9]* "\"" ws
|
12 |
+
|
13 |
+
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
|
14 |
+
|
15 |
+
|
16 |
+
ws ::= ([ \t\n] ws)?
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
torch
|
2 |
transformers>=4.26
|
|
|
|
1 |
torch
|
2 |
transformers>=4.26
|
3 |
+
transformers-cfg==0.2.0
|