Instant-Video / app.py
SahaniJi's picture
Update app.py
42e7535 verified
import gradio as gr
import torch
import os
import spaces
import uuid
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
from diffusers.utils import export_to_video
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
# Constants
bases = {
"Cartoon": "frankjoshua/toonyou_beta6",
"Realistic": "emilianJR/epiCRealism",
"3d": "Lykon/DreamShaper",
"Anime": "Yntec/mistoonAnime2"
}
step_loaded = None
base_loaded = "Realistic"
motion_loaded = None
# Ensure model and scheduler are initialized in GPU-enabled function
if not torch.cuda.is_available():
raise NotImplementedError("No GPU detected!")
device = "cuda"
dtype = torch.float16
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
# Safety checkers
from transformers import CLIPFeatureExtractor
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32")
# Function
@spaces.GPU(duration=60,queue=False)
def generate_image(prompt, base="Realistic", motion="", step=8, progress=gr.Progress()):
global step_loaded
global base_loaded
global motion_loaded
print(prompt, base, step)
step = int(step)
if step_loaded != step:
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
step_loaded = step
if base_loaded != base:
pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False)
base_loaded = base
if motion_loaded != motion:
pipe.unload_lora_weights()
if motion != "":
pipe.load_lora_weights(motion, adapter_name="motion")
pipe.set_adapters(["motion"], [0.7])
motion_loaded = motion
progress((0, step))
def progress_callback(i, t, z):
progress((i+1, step))
output = pipe(prompt=prompt, guidance_scale=1.2, num_inference_steps=step, callback=progress_callback, callback_steps=1)
name = str(uuid.uuid4()).replace("-", "")
path = f"/tmp/{name}.mp4"
export_to_video(output.frames[0], path, fps=10)
return path
# Gradio Interface
css = """
body {font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f4f4f9; color: #333;}
h1 {color: #333; text-align: center; margin-bottom: 20px;}
.gradio-container {max-width: 800px; margin: auto; padding: 20px; background: #fff; box-shadow: 0px 0px 20px rgba(0,0,0,0.1); border-radius: 10px;}
.gr-input {margin-bottom: 15px;}
.gr-button {width: 100%; background-color: #4CAF50; color: white; border: none; padding: 10px 20px; text-align: center; text-decoration: none; display: inline-block; font-size: 16px; border-radius: 5px; cursor: pointer; transition: background-color 0.3s;}
.gr-button:hover {background-color: #45a049;}
.gr-video {margin-top: 20px;}
.gr-examples {margin-top: 30px;}
.gr-examples .gr-example {display: inline-block; width: 100%; text-align: center; padding: 10px; background: #eaeaea; border-radius: 5px; margin-bottom: 10px;}
.container {display: flex; flex-wrap: wrap;}
.inputs, .output {padding: 20px;}
.inputs {flex: 1; min-width: 300px;}
.output {flex: 1; min-width: 300px;}
@media (max-width: 768px) {
.container {flex-direction: column-reverse;}
}
.svelte-1ybb3u7, .svelte-1clup3e {display: none !important;}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1>Instant⚡ Text to Video</h1>")
with gr.Row(elem_id="container"):
with gr.Column(elem_id="inputs"):
prompt = gr.Textbox(label='Prompt', placeholder="Enter text to generate video...", elem_id="gr-input")
select_base = gr.Dropdown(
label='Base model',
choices=["Cartoon", "Realistic", "3d", "Anime"],
value=base_loaded,
interactive=True,
elem_id="gr-input"
)
select_motion = gr.Dropdown(
label='Motion',
choices=[
("Default", ""),
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
],
value="guoyww/animatediff-motion-lora-zoom-in",
interactive=True,
elem_id="gr-input"
)
select_step = gr.Dropdown(
label='Inference steps',
choices=[('1-Step', 1), ('2-Step', 2), ('4-Step', 4), ('8-Step', 8)],
value=4,
interactive=True,
elem_id="gr-input"
)
submit = gr.Button("Generate Video", variant='primary', elem_id="gr-button")
with gr.Column(elem_id="output"):
video = gr.Video(label='AnimateDiff-Lightning', autoplay=True, height=512, width=512, elem_id="gr-video")
prompt.submit(fn=generate_image, inputs=[prompt, select_base, select_motion, select_step], outputs=video)
submit.click(fn=generate_image, inputs=[prompt, select_base, select_motion, select_step], outputs=video, api_name="instant_video")
gr.Examples(
examples=[
["Focus: Eiffel Tower (Animate: Clouds moving)"],
["Focus: Trees In forest (Animate: Lion running)"],
["Focus: Astronaut in Space"],
["Focus: Group of Birds in sky (Animate: Birds Moving) (Shot From distance)"],
["Focus: Statue of liberty (Shot from Drone) (Animate: Drone coming toward statue)"],
["Focus: Panda in Forest (Animate: Drinking Tea)"],
["Focus: Kids Playing (Season: Winter)"],
["Focus: Cars in Street (Season: Rain, Daytime) (Shot from Distance) (Movement: Cars running)"]
],
fn=generate_image,
inputs=[prompt],
outputs=video,
cache_examples=True,
elem_id="gr-examples"
)
demo.queue().launch(show_error=True)