Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import os | |
import spaces | |
import uuid | |
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler | |
from diffusers.utils import export_to_video | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from PIL import Image | |
# Constants | |
bases = { | |
"Cartoon": "frankjoshua/toonyou_beta6", | |
"Realistic": "emilianJR/epiCRealism", | |
"3d": "Lykon/DreamShaper", | |
"Anime": "Yntec/mistoonAnime2" | |
} | |
step_loaded = None | |
base_loaded = "Realistic" | |
motion_loaded = None | |
# Ensure model and scheduler are initialized in GPU-enabled function | |
if not torch.cuda.is_available(): | |
raise NotImplementedError("No GPU detected!") | |
device = "cuda" | |
dtype = torch.float16 | |
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") | |
# Safety checkers | |
from transformers import CLIPFeatureExtractor | |
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32") | |
# Function | |
def generate_image(prompt, base="Realistic", motion="", step=8, progress=gr.Progress()): | |
global step_loaded | |
global base_loaded | |
global motion_loaded | |
print(prompt, base, step) | |
step = int(step) | |
if step_loaded != step: | |
repo = "ByteDance/AnimateDiff-Lightning" | |
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" | |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) | |
step_loaded = step | |
if base_loaded != base: | |
pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False) | |
base_loaded = base | |
if motion_loaded != motion: | |
pipe.unload_lora_weights() | |
if motion != "": | |
pipe.load_lora_weights(motion, adapter_name="motion") | |
pipe.set_adapters(["motion"], [0.7]) | |
motion_loaded = motion | |
progress((0, step)) | |
def progress_callback(i, t, z): | |
progress((i+1, step)) | |
output = pipe(prompt=prompt, guidance_scale=1.2, num_inference_steps=step, callback=progress_callback, callback_steps=1) | |
name = str(uuid.uuid4()).replace("-", "") | |
path = f"/tmp/{name}.mp4" | |
export_to_video(output.frames[0], path, fps=10) | |
return path | |
# Gradio Interface | |
css = """ | |
body {font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f4f4f9; color: #333;} | |
h1 {color: #333; text-align: center; margin-bottom: 20px;} | |
.gradio-container {max-width: 800px; margin: auto; padding: 20px; background: #fff; box-shadow: 0px 0px 20px rgba(0,0,0,0.1); border-radius: 10px;} | |
.gr-input {margin-bottom: 15px;} | |
.gr-button {width: 100%; background-color: #4CAF50; color: white; border: none; padding: 10px 20px; text-align: center; text-decoration: none; display: inline-block; font-size: 16px; border-radius: 5px; cursor: pointer; transition: background-color 0.3s;} | |
.gr-button:hover {background-color: #45a049;} | |
.gr-video {margin-top: 20px;} | |
.gr-examples {margin-top: 30px;} | |
.gr-examples .gr-example {display: inline-block; width: 100%; text-align: center; padding: 10px; background: #eaeaea; border-radius: 5px; margin-bottom: 10px;} | |
.container {display: flex; flex-wrap: wrap;} | |
.inputs, .output {padding: 20px;} | |
.inputs {flex: 1; min-width: 300px;} | |
.output {flex: 1; min-width: 300px;} | |
@media (max-width: 768px) { | |
.container {flex-direction: column-reverse;} | |
} | |
.svelte-1ybb3u7, .svelte-1clup3e {display: none !important;} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1>Instant⚡ Text to Video</h1>") | |
with gr.Row(elem_id="container"): | |
with gr.Column(elem_id="inputs"): | |
prompt = gr.Textbox(label='Prompt', placeholder="Enter text to generate video...", elem_id="gr-input") | |
select_base = gr.Dropdown( | |
label='Base model', | |
choices=["Cartoon", "Realistic", "3d", "Anime"], | |
value=base_loaded, | |
interactive=True, | |
elem_id="gr-input" | |
) | |
select_motion = gr.Dropdown( | |
label='Motion', | |
choices=[ | |
("Default", ""), | |
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"), | |
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"), | |
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"), | |
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"), | |
("Pan left", "guoyww/animatediff-motion-lora-pan-left"), | |
("Pan right", "guoyww/animatediff-motion-lora-pan-right"), | |
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"), | |
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"), | |
], | |
value="guoyww/animatediff-motion-lora-zoom-in", | |
interactive=True, | |
elem_id="gr-input" | |
) | |
select_step = gr.Dropdown( | |
label='Inference steps', | |
choices=[('1-Step', 1), ('2-Step', 2), ('4-Step', 4), ('8-Step', 8)], | |
value=4, | |
interactive=True, | |
elem_id="gr-input" | |
) | |
submit = gr.Button("Generate Video", variant='primary', elem_id="gr-button") | |
with gr.Column(elem_id="output"): | |
video = gr.Video(label='AnimateDiff-Lightning', autoplay=True, height=512, width=512, elem_id="gr-video") | |
prompt.submit(fn=generate_image, inputs=[prompt, select_base, select_motion, select_step], outputs=video) | |
submit.click(fn=generate_image, inputs=[prompt, select_base, select_motion, select_step], outputs=video, api_name="instant_video") | |
gr.Examples( | |
examples=[ | |
["Focus: Eiffel Tower (Animate: Clouds moving)"], | |
["Focus: Trees In forest (Animate: Lion running)"], | |
["Focus: Astronaut in Space"], | |
["Focus: Group of Birds in sky (Animate: Birds Moving) (Shot From distance)"], | |
["Focus: Statue of liberty (Shot from Drone) (Animate: Drone coming toward statue)"], | |
["Focus: Panda in Forest (Animate: Drinking Tea)"], | |
["Focus: Kids Playing (Season: Winter)"], | |
["Focus: Cars in Street (Season: Rain, Daytime) (Shot from Distance) (Movement: Cars running)"] | |
], | |
fn=generate_image, | |
inputs=[prompt], | |
outputs=video, | |
cache_examples=True, | |
elem_id="gr-examples" | |
) | |
demo.queue().launch(show_error=True) | |