Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
class HybridEmbed(nn.Module): | |
""" CNN Feature Map Embedding | |
Extract feature map from CNN, flatten, project to embedding dim. | |
""" | |
def __init__(self, backbone, img_size=224, patch_size=1, feature_size=None, in_chans=3, embed_dim=768): | |
super().__init__() | |
assert isinstance(backbone, nn.Module) | |
img_size = (img_size, img_size) | |
patch_size = (patch_size, patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.backbone = backbone | |
if feature_size is None: | |
with torch.no_grad(): | |
# NOTE Most reliable way of determining output dims is to run forward pass | |
training = backbone.training | |
if training: | |
backbone.eval() | |
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1])) | |
if isinstance(o, (list, tuple)): | |
o = o[-1] # last feature if backbone outputs list/tuple of features | |
feature_size = o.shape[-2:] | |
feature_dim = o.shape[1] | |
backbone.train(training) | |
else: | |
feature_size = (feature_size, feature_size) | |
if hasattr(self.backbone, 'feature_info'): | |
feature_dim = self.backbone.feature_info.channels()[-1] | |
else: | |
feature_dim = self.backbone.num_features | |
assert feature_size[0] % patch_size[0] == 0 and feature_size[1] % patch_size[1] == 0 | |
self.grid_size = (feature_size[0] // patch_size[0], feature_size[1] // patch_size[1]) | |
self.num_patches = self.grid_size[0] * self.grid_size[1] | |
self.proj = nn.Conv2d(feature_dim, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x): | |
x = self.backbone(x) | |
if isinstance(x, (list, tuple)): | |
x = x[-1] # last feature if backbone outputs list/tuple of features | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x |