Spaces:
Runtime error
Runtime error
import argparse | |
import hashlib | |
import json | |
import os | |
import time | |
from threading import Thread | |
import gradio as gr | |
import torch | |
from llava.constants import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, | |
DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX) | |
from llava.conversation import (SeparatorStyle, conv_templates, | |
default_conversation) | |
from llava.mm_utils import (KeywordsStoppingCriteria, load_image_from_base64, | |
process_images, tokenizer_image_token) | |
from llava.model.builder import load_pretrained_model | |
from transformers import TextIteratorStreamer | |
print(gr.__version__) | |
block_css = """ | |
#buttons button { | |
min-width: min(120px,100%); | |
} | |
""" | |
title_markdown = (""" | |
# π¬ ShareGPT4V: Improving Large Multi-modal Models with Better Captions | |
### π Notice: The demo of Share-Captioner will soon be supported. Stay tune for updates! | |
[[Project Page](https://sharegpt4v.github.io/)] [[Code](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V)] | π [[Paper](https://arxiv.org/pdf/2311.12793.pdf)] | |
""") | |
tos_markdown = (""" | |
### Terms of use | |
By using this service, users are required to agree to the following terms: | |
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. | |
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. | |
""") | |
learn_more_markdown = (""" | |
### License | |
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. | |
""") | |
ack_markdown = (""" | |
### Acknowledgement | |
The template for this web demo is from [LLaVA](https://github.com/haotian-liu/LLaVA), and we are very grateful to LLaVA for their open source contributions to the community! | |
""") | |
def regenerate(state, image_process_mode): | |
state.messages[-1][-1] = None | |
prev_human_msg = state.messages[-2] | |
if type(prev_human_msg[1]) in (tuple, list): | |
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) | |
state.skip_next = False | |
return (state, state.to_gradio_chatbot(), "", None) | |
def clear_history(): | |
state = default_conversation.copy() | |
return (state, state.to_gradio_chatbot(), "", None) | |
def add_text(state, text, image, image_process_mode): | |
if len(text) <= 0 and image is None: | |
state.skip_next = True | |
return (state, state.to_gradio_chatbot(), "", None) | |
text = text[:1536] # Hard cut-off | |
if image is not None: | |
text = text[:1200] # Hard cut-off for images | |
if '<image>' not in text: | |
# text = '<Image><image></Image>' + text | |
text = text + '\n<image>' | |
text = (text, image, image_process_mode) | |
if len(state.get_images(return_pil=True)) > 0: | |
state = default_conversation.copy() | |
state.append_message(state.roles[0], text) | |
state.append_message(state.roles[1], None) | |
state.skip_next = False | |
return (state, state.to_gradio_chatbot(), "", None) | |
def load_demo(): | |
state = default_conversation.copy() | |
return state | |
def get_response(params): | |
prompt = params["prompt"] | |
ori_prompt = prompt | |
images = params.get("images", None) | |
num_image_tokens = 0 | |
if images is not None and len(images) > 0: | |
if len(images) > 0: | |
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): | |
raise ValueError( | |
"Number of images does not match number of <image> tokens in prompt") | |
images = [load_image_from_base64(image) for image in images] | |
images = process_images(images, image_processor, model.config) | |
if type(images) is list: | |
images = [image.to(model.device, dtype=torch.float16) | |
for image in images] | |
else: | |
images = images.to(model.device, dtype=torch.float16) | |
replace_token = DEFAULT_IMAGE_TOKEN | |
if getattr(model.config, 'mm_use_im_start_end', False): | |
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN | |
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
num_image_tokens = prompt.count( | |
replace_token) * model.get_vision_tower().num_patches | |
else: | |
images = None | |
image_args = {"images": images} | |
else: | |
images = None | |
image_args = {} | |
temperature = float(params.get("temperature", 1.0)) | |
top_p = float(params.get("top_p", 1.0)) | |
max_context_length = getattr( | |
model.config, 'max_position_embeddings', 2048) | |
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) | |
stop_str = params.get("stop", None) | |
do_sample = True if temperature > 0.001 else False | |
input_ids = tokenizer_image_token( | |
prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) | |
keywords = [stop_str] | |
stopping_criteria = KeywordsStoppingCriteria( | |
keywords, tokenizer, input_ids) | |
streamer = TextIteratorStreamer( | |
tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15) | |
max_new_tokens = min(max_new_tokens, max_context_length - | |
input_ids.shape[-1] - num_image_tokens) | |
if max_new_tokens < 1: | |
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0" | |
return | |
# local inference | |
thread = Thread(target=model.generate, kwargs=dict( | |
inputs=input_ids, | |
do_sample=do_sample, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
streamer=streamer, | |
stopping_criteria=[stopping_criteria], | |
use_cache=True, | |
**image_args | |
)) | |
thread.start() | |
generated_text = ori_prompt | |
for new_text in streamer: | |
generated_text += new_text | |
if generated_text.endswith(stop_str): | |
generated_text = generated_text[:-len(stop_str)] | |
yield json.dumps({"text": generated_text, "error_code": 0}).encode() | |
def http_bot(state, temperature, top_p, max_new_tokens): | |
if state.skip_next: | |
# This generate call is skipped due to invalid inputs | |
yield (state, state.to_gradio_chatbot()) | |
return | |
if len(state.messages) == state.offset + 2: | |
# First round of conversation | |
if "llava" in model_name.lower(): | |
if 'llama-2' in model_name.lower(): | |
template_name = "llava_llama_2" | |
elif "v1" in model_name.lower(): | |
if 'mmtag' in model_name.lower(): | |
template_name = "v1_mmtag" | |
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): | |
template_name = "v1_mmtag" | |
else: | |
template_name = "llava_v1" | |
elif "mpt" in model_name.lower(): | |
template_name = "mpt" | |
else: | |
if 'mmtag' in model_name.lower(): | |
template_name = "v0_mmtag" | |
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): | |
template_name = "v0_mmtag" | |
else: | |
template_name = "llava_v0" | |
elif "mpt" in model_name: | |
template_name = "mpt_text" | |
elif "llama-2" in model_name: | |
template_name = "llama_2" | |
else: | |
template_name = "vicuna_v1" | |
new_state = conv_templates[template_name].copy() | |
new_state.append_message(new_state.roles[0], state.messages[-2][1]) | |
new_state.append_message(new_state.roles[1], None) | |
state = new_state | |
# Construct prompt | |
prompt = state.get_prompt() | |
all_images = state.get_images(return_pil=True) | |
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() | |
for image in all_images] | |
# Make requests | |
pload = { | |
"model": model_name, | |
"prompt": prompt, | |
"temperature": float(temperature), | |
"top_p": float(top_p), | |
"max_new_tokens": min(int(max_new_tokens), 1536), | |
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2, | |
"images": f'List of {len(state.get_images())} images: {all_image_hash}', | |
} | |
pload['images'] = state.get_images() | |
state.messages[-1][-1] = "β" | |
yield (state, state.to_gradio_chatbot()) | |
# for stream | |
output = get_response(pload) | |
for chunk in output: | |
if chunk: | |
data = json.loads(chunk.decode()) | |
if data["error_code"] == 0: | |
output = data["text"][len(prompt):].strip() | |
state.messages[-1][-1] = output + "β" | |
yield (state, state.to_gradio_chatbot()) | |
else: | |
output = data["text"] + \ | |
f" (error_code: {data['error_code']})" | |
state.messages[-1][-1] = output | |
yield (state, state.to_gradio_chatbot()) | |
return | |
time.sleep(0.03) | |
state.messages[-1][-1] = state.messages[-1][-1][:-1] | |
yield (state, state.to_gradio_chatbot()) | |
def build_demo(): | |
textbox = gr.Textbox( | |
show_label=False, placeholder="Enter text and press ENTER", container=False) | |
with gr.Blocks(title="ShareGPT4V", theme=gr.themes.Default(), css=block_css) as demo: | |
state = gr.State() | |
gr.Markdown(title_markdown) | |
with gr.Row(): | |
with gr.Column(scale=5): | |
with gr.Row(elem_id="Model ID"): | |
gr.Dropdown( | |
choices=['ShareGPT4V-7B'], | |
value='ShareGPT4V-7B', | |
interactive=True, | |
label='Model ID', | |
container=False) | |
imagebox = gr.Image(type="pil") | |
image_process_mode = gr.Radio( | |
["Crop", "Resize", "Pad", "Default"], | |
value="Default", | |
label="Preprocess for non-square image", visible=False) | |
cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
gr.Examples(examples=[ | |
[f"{cur_dir}/examples/breaking_bad.png", | |
"What is the most common catchphrase of the character on the right?"], | |
[f"{cur_dir}/examples/photo.png", | |
"From a photography perspective, analyze what makes this picture beautiful?"], | |
], inputs=[imagebox, textbox]) | |
with gr.Accordion("Parameters", open=False) as _: | |
temperature = gr.Slider( | |
minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",) | |
top_p = gr.Slider( | |
minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",) | |
max_output_tokens = gr.Slider( | |
minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",) | |
with gr.Column(scale=8): | |
chatbot = gr.Chatbot( | |
elem_id="chatbot", label="ShareGPT4V Chatbot", height=550) | |
with gr.Row(): | |
with gr.Column(scale=8): | |
textbox.render() | |
with gr.Column(scale=1, min_width=50): | |
submit_btn = gr.Button(value="Send", variant="primary") | |
with gr.Row(elem_id="buttons") as _: | |
regenerate_btn = gr.Button( | |
value="π Regenerate", interactive=True) | |
clear_btn = gr.Button(value="ποΈ Clear", interactive=True) | |
gr.Markdown(tos_markdown) | |
gr.Markdown(learn_more_markdown) | |
gr.Markdown(ack_markdown) | |
regenerate_btn.click( | |
regenerate, | |
[state, image_process_mode], | |
[state, chatbot, textbox, imagebox], | |
queue=False | |
).then( | |
http_bot, | |
[state, temperature, top_p, max_output_tokens], | |
[state, chatbot] | |
) | |
clear_btn.click( | |
clear_history, | |
None, | |
[state, chatbot, textbox, imagebox], | |
queue=False | |
) | |
textbox.submit( | |
add_text, | |
[state, textbox, imagebox, image_process_mode], | |
[state, chatbot, textbox, imagebox], | |
queue=False | |
).then( | |
http_bot, | |
[state, temperature, top_p, max_output_tokens], | |
[state, chatbot] | |
) | |
submit_btn.click( | |
add_text, | |
[state, textbox, imagebox, image_process_mode], | |
[state, chatbot, textbox, imagebox], | |
queue=False | |
).then( | |
http_bot, | |
[state, temperature, top_p, max_output_tokens], | |
[state, chatbot] | |
) | |
demo.load( | |
load_demo, | |
None, | |
[state], | |
queue=False | |
) | |
return demo | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--host", type=str, default="0.0.0.0") | |
parser.add_argument("--port", type=int, default=7860) | |
parser.add_argument("--share", default=True) | |
parser.add_argument("--model-path", type=str, | |
default="Lin-Chen/ShareGPT4V-7B") | |
parser.add_argument("--model-name", type=str, | |
default="llava-v1.5-7b") | |
args = parser.parse_args() | |
return args | |
if __name__ == '__main__': | |
args = parse_args() | |
model_name = args.model_name | |
tokenizer, model, image_processor, context_len = load_pretrained_model( | |
args.model_path, None, args.model_name, False, False) | |
demo = build_demo() | |
demo.queue() | |
demo.launch(server_name=args.host, | |
server_port=args.port, | |
share=args.share) | |