|
"""This script contains base options for Deep3DFaceRecon_pytorch |
|
""" |
|
|
|
import argparse |
|
import os |
|
from util import util |
|
import numpy as np |
|
import torch |
|
import face3d.models as models |
|
import face3d.data as data |
|
|
|
|
|
class BaseOptions(): |
|
"""This class defines options used during both training and test time. |
|
|
|
It also implements several helper functions such as parsing, printing, and saving the options. |
|
It also gathers additional options defined in <modify_commandline_options> functions in both dataset class and model class. |
|
""" |
|
|
|
def __init__(self, cmd_line=None): |
|
"""Reset the class; indicates the class hasn't been initailized""" |
|
self.initialized = False |
|
self.cmd_line = None |
|
if cmd_line is not None: |
|
self.cmd_line = cmd_line.split() |
|
|
|
def initialize(self, parser): |
|
"""Define the common options that are used in both training and test.""" |
|
|
|
parser.add_argument('--name', type=str, default='face_recon', help='name of the experiment. It decides where to store samples and models') |
|
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') |
|
parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') |
|
parser.add_argument('--vis_batch_nums', type=float, default=1, help='batch nums of images for visulization') |
|
parser.add_argument('--eval_batch_nums', type=float, default=float('inf'), help='batch nums of images for evaluation') |
|
parser.add_argument('--use_ddp', type=util.str2bool, nargs='?', const=True, default=True, help='whether use distributed data parallel') |
|
parser.add_argument('--ddp_port', type=str, default='12355', help='ddp port') |
|
parser.add_argument('--display_per_batch', type=util.str2bool, nargs='?', const=True, default=True, help='whether use batch to show losses') |
|
parser.add_argument('--add_image', type=util.str2bool, nargs='?', const=True, default=True, help='whether add image to tensorboard') |
|
parser.add_argument('--world_size', type=int, default=1, help='batch nums of images for evaluation') |
|
|
|
|
|
parser.add_argument('--model', type=str, default='facerecon', help='chooses which model to use.') |
|
|
|
|
|
parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') |
|
parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information') |
|
parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}') |
|
|
|
self.initialized = True |
|
return parser |
|
|
|
def gather_options(self): |
|
"""Initialize our parser with basic options(only once). |
|
Add additional model-specific and dataset-specific options. |
|
These options are defined in the <modify_commandline_options> function |
|
in model and dataset classes. |
|
""" |
|
if not self.initialized: |
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
parser = self.initialize(parser) |
|
|
|
|
|
if self.cmd_line is None: |
|
opt, _ = parser.parse_known_args() |
|
else: |
|
opt, _ = parser.parse_known_args(self.cmd_line) |
|
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_ids |
|
|
|
|
|
model_name = opt.model |
|
model_option_setter = models.get_option_setter(model_name) |
|
parser = model_option_setter(parser, self.isTrain) |
|
if self.cmd_line is None: |
|
opt, _ = parser.parse_known_args() |
|
else: |
|
opt, _ = parser.parse_known_args(self.cmd_line) |
|
|
|
|
|
if opt.dataset_mode: |
|
dataset_name = opt.dataset_mode |
|
dataset_option_setter = data.get_option_setter(dataset_name) |
|
parser = dataset_option_setter(parser, self.isTrain) |
|
|
|
|
|
self.parser = parser |
|
if self.cmd_line is None: |
|
return parser.parse_args() |
|
else: |
|
return parser.parse_args(self.cmd_line) |
|
|
|
def print_options(self, opt): |
|
"""Print and save options |
|
|
|
It will print both current options and default values(if different). |
|
It will save options into a text file / [checkpoints_dir] / opt.txt |
|
""" |
|
message = '' |
|
message += '----------------- Options ---------------\n' |
|
for k, v in sorted(vars(opt).items()): |
|
comment = '' |
|
default = self.parser.get_default(k) |
|
if v != default: |
|
comment = '\t[default: %s]' % str(default) |
|
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) |
|
message += '----------------- End -------------------' |
|
print(message) |
|
|
|
|
|
expr_dir = os.path.join(opt.checkpoints_dir, opt.name) |
|
util.mkdirs(expr_dir) |
|
file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase)) |
|
try: |
|
with open(file_name, 'wt') as opt_file: |
|
opt_file.write(message) |
|
opt_file.write('\n') |
|
except PermissionError as error: |
|
print("permission error {}".format(error)) |
|
pass |
|
|
|
def parse(self): |
|
"""Parse our options, create checkpoints directory suffix, and set up gpu device.""" |
|
opt = self.gather_options() |
|
opt.isTrain = self.isTrain |
|
|
|
|
|
if opt.suffix: |
|
suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else '' |
|
opt.name = opt.name + suffix |
|
|
|
|
|
|
|
str_ids = opt.gpu_ids.split(',') |
|
gpu_ids = [] |
|
for str_id in str_ids: |
|
id = int(str_id) |
|
if id >= 0: |
|
gpu_ids.append(id) |
|
opt.world_size = len(gpu_ids) |
|
|
|
|
|
if opt.world_size == 1: |
|
opt.use_ddp = False |
|
|
|
if opt.phase != 'test': |
|
|
|
if opt.pretrained_name is None: |
|
model_dir = os.path.join(opt.checkpoints_dir, opt.name) |
|
else: |
|
model_dir = os.path.join(opt.checkpoints_dir, opt.pretrained_name) |
|
if os.path.isdir(model_dir): |
|
model_pths = [i for i in os.listdir(model_dir) if i.endswith('pth')] |
|
if os.path.isdir(model_dir) and len(model_pths) != 0: |
|
opt.continue_train= True |
|
|
|
|
|
if opt.continue_train: |
|
if opt.epoch == 'latest': |
|
epoch_counts = [int(i.split('.')[0].split('_')[-1]) for i in model_pths if 'latest' not in i] |
|
if len(epoch_counts) != 0: |
|
opt.epoch_count = max(epoch_counts) + 1 |
|
else: |
|
opt.epoch_count = int(opt.epoch) + 1 |
|
|
|
|
|
self.print_options(opt) |
|
self.opt = opt |
|
return self.opt |
|
|