|
import os |
|
import cv2 |
|
from tqdm import tqdm |
|
import yaml |
|
import numpy as np |
|
import warnings |
|
from skimage import img_as_ubyte |
|
import safetensors |
|
import safetensors.torch |
|
warnings.filterwarnings('ignore') |
|
|
|
|
|
import imageio |
|
import torch |
|
|
|
from src.facerender.pirender.config import Config |
|
from src.facerender.pirender.face_model import FaceGenerator |
|
|
|
from pydub import AudioSegment |
|
from src.utils.face_enhancer import enhancer_generator_with_len, enhancer_list |
|
from src.utils.paste_pic import paste_pic |
|
from src.utils.videoio import save_video_with_watermark |
|
|
|
try: |
|
import webui |
|
in_webui = True |
|
except: |
|
in_webui = False |
|
|
|
class AnimateFromCoeff_PIRender(): |
|
|
|
def __init__(self, sadtalker_path, device): |
|
|
|
opt = Config(sadtalker_path['pirender_yaml_path'], None, is_train=False) |
|
opt.device = device |
|
self.net_G_ema = FaceGenerator(**opt.gen.param).to(opt.device) |
|
checkpoint_path = sadtalker_path['pirender_checkpoint'] |
|
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) |
|
self.net_G_ema.load_state_dict(checkpoint['net_G_ema'], strict=False) |
|
print('load [net_G] and [net_G_ema] from {}'.format(checkpoint_path)) |
|
self.net_G = self.net_G_ema.eval() |
|
self.device = device |
|
|
|
|
|
def generate(self, x, video_save_dir, pic_path, crop_info, enhancer=None, background_enhancer=None, preprocess='crop', img_size=256): |
|
|
|
source_image=x['source_image'].type(torch.FloatTensor) |
|
source_semantics=x['source_semantics'].type(torch.FloatTensor) |
|
target_semantics=x['target_semantics_list'].type(torch.FloatTensor) |
|
source_image=source_image.to(self.device) |
|
source_semantics=source_semantics.to(self.device) |
|
target_semantics=target_semantics.to(self.device) |
|
frame_num = x['frame_num'] |
|
|
|
with torch.no_grad(): |
|
predictions_video = [] |
|
for i in tqdm(range(target_semantics.shape[1]), 'FaceRender:'): |
|
predictions_video.append(self.net_G(source_image, target_semantics[:, i])['fake_image']) |
|
|
|
predictions_video = torch.stack(predictions_video, dim=1) |
|
predictions_video = predictions_video.reshape((-1,)+predictions_video.shape[2:]) |
|
|
|
video = [] |
|
for idx in range(len(predictions_video)): |
|
image = predictions_video[idx] |
|
image = np.transpose(image.data.cpu().numpy(), [1, 2, 0]).astype(np.float32) |
|
video.append(image) |
|
result = img_as_ubyte(video) |
|
|
|
|
|
original_size = crop_info[0] |
|
if original_size: |
|
result = [ cv2.resize(result_i,(img_size, int(img_size * original_size[1]/original_size[0]) )) for result_i in result ] |
|
|
|
video_name = x['video_name'] + '.mp4' |
|
path = os.path.join(video_save_dir, 'temp_'+video_name) |
|
|
|
imageio.mimsave(path, result, fps=float(25)) |
|
|
|
av_path = os.path.join(video_save_dir, video_name) |
|
return_path = av_path |
|
|
|
audio_path = x['audio_path'] |
|
audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0] |
|
new_audio_path = os.path.join(video_save_dir, audio_name+'.wav') |
|
start_time = 0 |
|
|
|
sound = AudioSegment.from_file(audio_path) |
|
frames = frame_num |
|
end_time = start_time + frames*1/25*1000 |
|
word1=sound.set_frame_rate(16000) |
|
word = word1[start_time:end_time] |
|
word.export(new_audio_path, format="wav") |
|
|
|
save_video_with_watermark(path, new_audio_path, av_path, watermark= False) |
|
print(f'The generated video is named {video_save_dir}/{video_name}') |
|
|
|
if 'full' in preprocess.lower(): |
|
|
|
video_name_full = x['video_name'] + '_full.mp4' |
|
full_video_path = os.path.join(video_save_dir, video_name_full) |
|
return_path = full_video_path |
|
paste_pic(path, pic_path, crop_info, new_audio_path, full_video_path, extended_crop= True if 'ext' in preprocess.lower() else False) |
|
print(f'The generated video is named {video_save_dir}/{video_name_full}') |
|
else: |
|
full_video_path = av_path |
|
|
|
|
|
if enhancer: |
|
video_name_enhancer = x['video_name'] + '_enhanced.mp4' |
|
enhanced_path = os.path.join(video_save_dir, 'temp_'+video_name_enhancer) |
|
av_path_enhancer = os.path.join(video_save_dir, video_name_enhancer) |
|
return_path = av_path_enhancer |
|
|
|
try: |
|
enhanced_images_gen_with_len = enhancer_generator_with_len(full_video_path, method=enhancer, bg_upsampler=background_enhancer) |
|
imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(25)) |
|
except: |
|
enhanced_images_gen_with_len = enhancer_list(full_video_path, method=enhancer, bg_upsampler=background_enhancer) |
|
imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(25)) |
|
|
|
save_video_with_watermark(enhanced_path, new_audio_path, av_path_enhancer, watermark= False) |
|
print(f'The generated video is named {video_save_dir}/{video_name_enhancer}') |
|
os.remove(enhanced_path) |
|
|
|
os.remove(path) |
|
os.remove(new_audio_path) |
|
|
|
return return_path |
|
|
|
|