|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from src.facerender.modules.util import ResBlock2d, SameBlock2d, UpBlock2d, DownBlock2d, ResBlock3d, SPADEResnetBlock |
|
from src.facerender.modules.dense_motion import DenseMotionNetwork |
|
|
|
|
|
class OcclusionAwareGenerator(nn.Module): |
|
""" |
|
Generator follows NVIDIA architecture. |
|
""" |
|
|
|
def __init__(self, image_channel, feature_channel, num_kp, block_expansion, max_features, num_down_blocks, reshape_channel, reshape_depth, |
|
num_resblocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False): |
|
super(OcclusionAwareGenerator, self).__init__() |
|
|
|
if dense_motion_params is not None: |
|
self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, feature_channel=feature_channel, |
|
estimate_occlusion_map=estimate_occlusion_map, |
|
**dense_motion_params) |
|
else: |
|
self.dense_motion_network = None |
|
|
|
self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(7, 7), padding=(3, 3)) |
|
|
|
down_blocks = [] |
|
for i in range(num_down_blocks): |
|
in_features = min(max_features, block_expansion * (2 ** i)) |
|
out_features = min(max_features, block_expansion * (2 ** (i + 1))) |
|
down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) |
|
self.down_blocks = nn.ModuleList(down_blocks) |
|
|
|
self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1) |
|
|
|
self.reshape_channel = reshape_channel |
|
self.reshape_depth = reshape_depth |
|
|
|
self.resblocks_3d = torch.nn.Sequential() |
|
for i in range(num_resblocks): |
|
self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1)) |
|
|
|
out_features = block_expansion * (2 ** (num_down_blocks)) |
|
self.third = SameBlock2d(max_features, out_features, kernel_size=(3, 3), padding=(1, 1), lrelu=True) |
|
self.fourth = nn.Conv2d(in_channels=out_features, out_channels=out_features, kernel_size=1, stride=1) |
|
|
|
self.resblocks_2d = torch.nn.Sequential() |
|
for i in range(num_resblocks): |
|
self.resblocks_2d.add_module('2dr' + str(i), ResBlock2d(out_features, kernel_size=3, padding=1)) |
|
|
|
up_blocks = [] |
|
for i in range(num_down_blocks): |
|
in_features = max(block_expansion, block_expansion * (2 ** (num_down_blocks - i))) |
|
out_features = max(block_expansion, block_expansion * (2 ** (num_down_blocks - i - 1))) |
|
up_blocks.append(UpBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) |
|
self.up_blocks = nn.ModuleList(up_blocks) |
|
|
|
self.final = nn.Conv2d(block_expansion, image_channel, kernel_size=(7, 7), padding=(3, 3)) |
|
self.estimate_occlusion_map = estimate_occlusion_map |
|
self.image_channel = image_channel |
|
|
|
def deform_input(self, inp, deformation): |
|
_, d_old, h_old, w_old, _ = deformation.shape |
|
_, _, d, h, w = inp.shape |
|
if d_old != d or h_old != h or w_old != w: |
|
deformation = deformation.permute(0, 4, 1, 2, 3) |
|
deformation = F.interpolate(deformation, size=(d, h, w), mode='trilinear') |
|
deformation = deformation.permute(0, 2, 3, 4, 1) |
|
return F.grid_sample(inp, deformation) |
|
|
|
def forward(self, source_image, kp_driving, kp_source): |
|
|
|
out = self.first(source_image) |
|
for i in range(len(self.down_blocks)): |
|
out = self.down_blocks[i](out) |
|
out = self.second(out) |
|
bs, c, h, w = out.shape |
|
|
|
feature_3d = out.view(bs, self.reshape_channel, self.reshape_depth, h ,w) |
|
feature_3d = self.resblocks_3d(feature_3d) |
|
|
|
|
|
output_dict = {} |
|
if self.dense_motion_network is not None: |
|
dense_motion = self.dense_motion_network(feature=feature_3d, kp_driving=kp_driving, |
|
kp_source=kp_source) |
|
output_dict['mask'] = dense_motion['mask'] |
|
|
|
if 'occlusion_map' in dense_motion: |
|
occlusion_map = dense_motion['occlusion_map'] |
|
output_dict['occlusion_map'] = occlusion_map |
|
else: |
|
occlusion_map = None |
|
deformation = dense_motion['deformation'] |
|
out = self.deform_input(feature_3d, deformation) |
|
|
|
bs, c, d, h, w = out.shape |
|
out = out.view(bs, c*d, h, w) |
|
out = self.third(out) |
|
out = self.fourth(out) |
|
|
|
if occlusion_map is not None: |
|
if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]: |
|
occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear') |
|
out = out * occlusion_map |
|
|
|
|
|
|
|
|
|
out = self.resblocks_2d(out) |
|
for i in range(len(self.up_blocks)): |
|
out = self.up_blocks[i](out) |
|
out = self.final(out) |
|
out = F.sigmoid(out) |
|
|
|
output_dict["prediction"] = out |
|
|
|
return output_dict |
|
|
|
|
|
class SPADEDecoder(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
ic = 256 |
|
oc = 64 |
|
norm_G = 'spadespectralinstance' |
|
label_nc = 256 |
|
|
|
self.fc = nn.Conv2d(ic, 2 * ic, 3, padding=1) |
|
self.G_middle_0 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) |
|
self.G_middle_1 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) |
|
self.G_middle_2 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) |
|
self.G_middle_3 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) |
|
self.G_middle_4 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) |
|
self.G_middle_5 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) |
|
self.up_0 = SPADEResnetBlock(2 * ic, ic, norm_G, label_nc) |
|
self.up_1 = SPADEResnetBlock(ic, oc, norm_G, label_nc) |
|
self.conv_img = nn.Conv2d(oc, 3, 3, padding=1) |
|
self.up = nn.Upsample(scale_factor=2) |
|
|
|
def forward(self, feature): |
|
seg = feature |
|
x = self.fc(feature) |
|
x = self.G_middle_0(x, seg) |
|
x = self.G_middle_1(x, seg) |
|
x = self.G_middle_2(x, seg) |
|
x = self.G_middle_3(x, seg) |
|
x = self.G_middle_4(x, seg) |
|
x = self.G_middle_5(x, seg) |
|
x = self.up(x) |
|
x = self.up_0(x, seg) |
|
x = self.up(x) |
|
x = self.up_1(x, seg) |
|
|
|
x = self.conv_img(F.leaky_relu(x, 2e-1)) |
|
|
|
x = F.sigmoid(x) |
|
|
|
return x |
|
|
|
|
|
class OcclusionAwareSPADEGenerator(nn.Module): |
|
|
|
def __init__(self, image_channel, feature_channel, num_kp, block_expansion, max_features, num_down_blocks, reshape_channel, reshape_depth, |
|
num_resblocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False): |
|
super(OcclusionAwareSPADEGenerator, self).__init__() |
|
|
|
if dense_motion_params is not None: |
|
self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, feature_channel=feature_channel, |
|
estimate_occlusion_map=estimate_occlusion_map, |
|
**dense_motion_params) |
|
else: |
|
self.dense_motion_network = None |
|
|
|
self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(3, 3), padding=(1, 1)) |
|
|
|
down_blocks = [] |
|
for i in range(num_down_blocks): |
|
in_features = min(max_features, block_expansion * (2 ** i)) |
|
out_features = min(max_features, block_expansion * (2 ** (i + 1))) |
|
down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) |
|
self.down_blocks = nn.ModuleList(down_blocks) |
|
|
|
self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1) |
|
|
|
self.reshape_channel = reshape_channel |
|
self.reshape_depth = reshape_depth |
|
|
|
self.resblocks_3d = torch.nn.Sequential() |
|
for i in range(num_resblocks): |
|
self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1)) |
|
|
|
out_features = block_expansion * (2 ** (num_down_blocks)) |
|
self.third = SameBlock2d(max_features, out_features, kernel_size=(3, 3), padding=(1, 1), lrelu=True) |
|
self.fourth = nn.Conv2d(in_channels=out_features, out_channels=out_features, kernel_size=1, stride=1) |
|
|
|
self.estimate_occlusion_map = estimate_occlusion_map |
|
self.image_channel = image_channel |
|
|
|
self.decoder = SPADEDecoder() |
|
|
|
def deform_input(self, inp, deformation): |
|
_, d_old, h_old, w_old, _ = deformation.shape |
|
_, _, d, h, w = inp.shape |
|
if d_old != d or h_old != h or w_old != w: |
|
deformation = deformation.permute(0, 4, 1, 2, 3) |
|
deformation = F.interpolate(deformation, size=(d, h, w), mode='trilinear') |
|
deformation = deformation.permute(0, 2, 3, 4, 1) |
|
return F.grid_sample(inp, deformation) |
|
|
|
def forward(self, source_image, kp_driving, kp_source): |
|
|
|
out = self.first(source_image) |
|
for i in range(len(self.down_blocks)): |
|
out = self.down_blocks[i](out) |
|
out = self.second(out) |
|
bs, c, h, w = out.shape |
|
|
|
feature_3d = out.view(bs, self.reshape_channel, self.reshape_depth, h ,w) |
|
feature_3d = self.resblocks_3d(feature_3d) |
|
|
|
|
|
output_dict = {} |
|
if self.dense_motion_network is not None: |
|
dense_motion = self.dense_motion_network(feature=feature_3d, kp_driving=kp_driving, |
|
kp_source=kp_source) |
|
output_dict['mask'] = dense_motion['mask'] |
|
|
|
|
|
|
|
if 'occlusion_map' in dense_motion: |
|
occlusion_map = dense_motion['occlusion_map'] |
|
output_dict['occlusion_map'] = occlusion_map |
|
else: |
|
occlusion_map = None |
|
deformation = dense_motion['deformation'] |
|
out = self.deform_input(feature_3d, deformation) |
|
|
|
bs, c, d, h, w = out.shape |
|
out = out.view(bs, c*d, h, w) |
|
out = self.third(out) |
|
out = self.fourth(out) |
|
|
|
|
|
|
|
if occlusion_map is not None: |
|
if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]: |
|
occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear') |
|
out = out * occlusion_map |
|
|
|
|
|
out = self.decoder(out) |
|
|
|
output_dict["prediction"] = out |
|
|
|
return output_dict |