|
import torch, uuid
|
|
import os, sys, shutil
|
|
from src.utils.preprocess import CropAndExtract
|
|
from src.test_audio2coeff import Audio2Coeff
|
|
from src.facerender.animate import AnimateFromCoeff
|
|
from src.generate_batch import get_data
|
|
from src.generate_facerender_batch import get_facerender_data
|
|
|
|
from pydub import AudioSegment
|
|
|
|
def mp3_to_wav(mp3_filename,wav_filename,frame_rate):
|
|
mp3_file = AudioSegment.from_file(file=mp3_filename)
|
|
mp3_file.set_frame_rate(frame_rate).export(wav_filename,format="wav")
|
|
|
|
|
|
class SadTalker():
|
|
|
|
def __init__(self, checkpoint_path='checkpoints', config_path='src/config', lazy_load=False):
|
|
|
|
if torch.cuda.is_available() :
|
|
device = "cuda"
|
|
else:
|
|
device = "cpu"
|
|
|
|
self.device = device
|
|
|
|
os.environ['TORCH_HOME']= checkpoint_path
|
|
|
|
self.checkpoint_path = checkpoint_path
|
|
self.config_path = config_path
|
|
|
|
self.path_of_lm_croper = os.path.join( checkpoint_path, 'shape_predictor_68_face_landmarks.dat')
|
|
self.path_of_net_recon_model = os.path.join( checkpoint_path, 'epoch_20.pth')
|
|
self.dir_of_BFM_fitting = os.path.join( checkpoint_path, 'BFM_Fitting')
|
|
self.wav2lip_checkpoint = os.path.join( checkpoint_path, 'wav2lip.pth')
|
|
|
|
self.audio2pose_checkpoint = os.path.join( checkpoint_path, 'auido2pose_00140-model.pth')
|
|
self.audio2pose_yaml_path = os.path.join( config_path, 'auido2pose.yaml')
|
|
|
|
self.audio2exp_checkpoint = os.path.join( checkpoint_path, 'auido2exp_00300-model.pth')
|
|
self.audio2exp_yaml_path = os.path.join( config_path, 'auido2exp.yaml')
|
|
|
|
self.free_view_checkpoint = os.path.join( checkpoint_path, 'facevid2vid_00189-model.pth.tar')
|
|
|
|
self.lazy_load = lazy_load
|
|
|
|
if not self.lazy_load:
|
|
|
|
print(self.path_of_lm_croper)
|
|
self.preprocess_model = CropAndExtract(self.path_of_lm_croper, self.path_of_net_recon_model, self.dir_of_BFM_fitting, self.device)
|
|
|
|
print(self.audio2pose_checkpoint)
|
|
self.audio_to_coeff = Audio2Coeff(self.audio2pose_checkpoint, self.audio2pose_yaml_path,
|
|
self.audio2exp_checkpoint, self.audio2exp_yaml_path, self.wav2lip_checkpoint, self.device)
|
|
|
|
def test(self, source_image, driven_audio, preprocess='crop', still_mode=False, use_enhancer=False, result_dir='./results/'):
|
|
|
|
|
|
|
|
if self.lazy_load:
|
|
|
|
print(self.path_of_lm_croper)
|
|
self.preprocess_model = CropAndExtract(self.path_of_lm_croper, self.path_of_net_recon_model, self.dir_of_BFM_fitting, self.device)
|
|
|
|
print(self.audio2pose_checkpoint)
|
|
self.audio_to_coeff = Audio2Coeff(self.audio2pose_checkpoint, self.audio2pose_yaml_path,
|
|
self.audio2exp_checkpoint, self.audio2exp_yaml_path, self.wav2lip_checkpoint, self.device)
|
|
|
|
if preprocess == 'full':
|
|
self.mapping_checkpoint = os.path.join(self.checkpoint_path, 'mapping_00109-model.pth.tar')
|
|
self.facerender_yaml_path = os.path.join(self.config_path, 'facerender_still.yaml')
|
|
else:
|
|
self.mapping_checkpoint = os.path.join(self.checkpoint_path, 'mapping_00229-model.pth.tar')
|
|
self.facerender_yaml_path = os.path.join(self.config_path, 'facerender.yaml')
|
|
|
|
print(self.mapping_checkpoint)
|
|
print(self.free_view_checkpoint)
|
|
self.animate_from_coeff = AnimateFromCoeff(self.free_view_checkpoint, self.mapping_checkpoint,
|
|
self.facerender_yaml_path, self.device)
|
|
|
|
time_tag = str(uuid.uuid4())
|
|
save_dir = os.path.join(result_dir, time_tag)
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
input_dir = os.path.join(save_dir, 'input')
|
|
os.makedirs(input_dir, exist_ok=True)
|
|
|
|
print(source_image)
|
|
pic_path = os.path.join(input_dir, os.path.basename(source_image))
|
|
shutil.move(source_image, input_dir)
|
|
|
|
if os.path.isfile(driven_audio):
|
|
audio_path = os.path.join(input_dir, os.path.basename(driven_audio))
|
|
|
|
|
|
if '.mp3' in audio_path:
|
|
mp3_to_wav(driven_audio, audio_path.replace('.mp3', '.wav'), 16000)
|
|
audio_path = audio_path.replace('.mp3', '.wav')
|
|
else:
|
|
shutil.move(driven_audio, input_dir)
|
|
else:
|
|
raise AttributeError("error audio")
|
|
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
pose_style = 0
|
|
|
|
first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
|
|
os.makedirs(first_frame_dir, exist_ok=True)
|
|
first_coeff_path, crop_pic_path, crop_info = self.preprocess_model.generate(pic_path, first_frame_dir,preprocess)
|
|
|
|
if first_coeff_path is None:
|
|
raise AttributeError("No face is detected")
|
|
|
|
|
|
batch = get_data(first_coeff_path, audio_path, self.device, ref_eyeblink_coeff_path=None, still=still_mode)
|
|
coeff_path = self.audio_to_coeff.generate(batch, save_dir, pose_style)
|
|
|
|
batch_size = 8
|
|
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size, still_mode=still_mode, preprocess=preprocess)
|
|
return_path = self.animate_from_coeff.generate(data, save_dir, pic_path, crop_info, enhancer='gfpgan' if use_enhancer else None, preprocess=preprocess)
|
|
video_name = data['video_name']
|
|
print(f'The generated video is named {video_name} in {save_dir}')
|
|
|
|
if self.lazy_load:
|
|
del self.preprocess_model
|
|
del self.audio_to_coeff
|
|
del self.animate_from_coeff
|
|
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.synchronize()
|
|
import gc; gc.collect()
|
|
|
|
return return_path
|
|
|
|
|