Spaces:
Runtime error
Runtime error
Upload yolo.py
Browse files- models/yolo.py +843 -0
models/yolo.py
ADDED
@@ -0,0 +1,843 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import sys
|
4 |
+
from copy import deepcopy
|
5 |
+
|
6 |
+
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
7 |
+
logger = logging.getLogger(__name__)
|
8 |
+
import torch
|
9 |
+
from models.common import *
|
10 |
+
from models.experimental import *
|
11 |
+
from utils.autoanchor import check_anchor_order
|
12 |
+
from utils.general import make_divisible, check_file, set_logging
|
13 |
+
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
|
14 |
+
select_device, copy_attr
|
15 |
+
from utils.loss import SigmoidBin
|
16 |
+
|
17 |
+
try:
|
18 |
+
import thop # for FLOPS computation
|
19 |
+
except ImportError:
|
20 |
+
thop = None
|
21 |
+
|
22 |
+
|
23 |
+
class Detect(nn.Module):
|
24 |
+
stride = None # strides computed during build
|
25 |
+
export = False # onnx export
|
26 |
+
end2end = False
|
27 |
+
include_nms = False
|
28 |
+
concat = False
|
29 |
+
|
30 |
+
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
31 |
+
super(Detect, self).__init__()
|
32 |
+
self.nc = nc # number of classes
|
33 |
+
self.no = nc + 5 # number of outputs per anchor
|
34 |
+
self.nl = len(anchors) # number of detection layers
|
35 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
36 |
+
self.grid = [torch.zeros(1)] * self.nl # init grid
|
37 |
+
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
38 |
+
self.register_buffer('anchors', a) # shape(nl,na,2)
|
39 |
+
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
40 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
# x = x.copy() # for profiling
|
44 |
+
z = [] # inference output
|
45 |
+
self.training |= self.export
|
46 |
+
for i in range(self.nl):
|
47 |
+
x[i] = self.m[i](x[i]) # conv
|
48 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
49 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
50 |
+
|
51 |
+
if not self.training: # inference
|
52 |
+
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
53 |
+
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
54 |
+
y = x[i].sigmoid()
|
55 |
+
if not torch.onnx.is_in_onnx_export():
|
56 |
+
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
57 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
58 |
+
else:
|
59 |
+
xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
|
60 |
+
xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) # new xy
|
61 |
+
wh = wh ** 2 * (4 * self.anchor_grid[i].data) # new wh
|
62 |
+
y = torch.cat((xy, wh, conf), 4)
|
63 |
+
z.append(y.view(bs, -1, self.no))
|
64 |
+
|
65 |
+
if self.training:
|
66 |
+
out = x
|
67 |
+
elif self.end2end:
|
68 |
+
out = torch.cat(z, 1)
|
69 |
+
elif self.include_nms:
|
70 |
+
z = self.convert(z)
|
71 |
+
out = (z, )
|
72 |
+
elif self.concat:
|
73 |
+
out = torch.cat(z, 1)
|
74 |
+
else:
|
75 |
+
out = (torch.cat(z, 1), x)
|
76 |
+
|
77 |
+
return out
|
78 |
+
|
79 |
+
@staticmethod
|
80 |
+
def _make_grid(nx=20, ny=20):
|
81 |
+
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
82 |
+
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
83 |
+
|
84 |
+
def convert(self, z):
|
85 |
+
z = torch.cat(z, 1)
|
86 |
+
box = z[:, :, :4]
|
87 |
+
conf = z[:, :, 4:5]
|
88 |
+
score = z[:, :, 5:]
|
89 |
+
score *= conf
|
90 |
+
convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
|
91 |
+
dtype=torch.float32,
|
92 |
+
device=z.device)
|
93 |
+
box @= convert_matrix
|
94 |
+
return (box, score)
|
95 |
+
|
96 |
+
|
97 |
+
class IDetect(nn.Module):
|
98 |
+
stride = None # strides computed during build
|
99 |
+
export = False # onnx export
|
100 |
+
end2end = False
|
101 |
+
include_nms = False
|
102 |
+
concat = False
|
103 |
+
|
104 |
+
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
105 |
+
super(IDetect, self).__init__()
|
106 |
+
self.nc = nc # number of classes
|
107 |
+
self.no = nc + 5 # number of outputs per anchor
|
108 |
+
self.nl = len(anchors) # number of detection layers
|
109 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
110 |
+
self.grid = [torch.zeros(1)] * self.nl # init grid
|
111 |
+
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
112 |
+
self.register_buffer('anchors', a) # shape(nl,na,2)
|
113 |
+
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
114 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
115 |
+
|
116 |
+
self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
|
117 |
+
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
# x = x.copy() # for profiling
|
121 |
+
z = [] # inference output
|
122 |
+
self.training |= self.export
|
123 |
+
for i in range(self.nl):
|
124 |
+
x[i] = self.m[i](self.ia[i](x[i])) # conv
|
125 |
+
x[i] = self.im[i](x[i])
|
126 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
127 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
128 |
+
|
129 |
+
if not self.training: # inference
|
130 |
+
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
131 |
+
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
132 |
+
|
133 |
+
y = x[i].sigmoid()
|
134 |
+
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
135 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
136 |
+
z.append(y.view(bs, -1, self.no))
|
137 |
+
|
138 |
+
return x if self.training else (torch.cat(z, 1), x)
|
139 |
+
|
140 |
+
def fuseforward(self, x):
|
141 |
+
# x = x.copy() # for profiling
|
142 |
+
z = [] # inference output
|
143 |
+
self.training |= self.export
|
144 |
+
for i in range(self.nl):
|
145 |
+
x[i] = self.m[i](x[i]) # conv
|
146 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
147 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
148 |
+
|
149 |
+
if not self.training: # inference
|
150 |
+
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
151 |
+
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
152 |
+
|
153 |
+
y = x[i].sigmoid()
|
154 |
+
if not torch.onnx.is_in_onnx_export():
|
155 |
+
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
156 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
157 |
+
else:
|
158 |
+
xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
|
159 |
+
xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) # new xy
|
160 |
+
wh = wh ** 2 * (4 * self.anchor_grid[i].data) # new wh
|
161 |
+
y = torch.cat((xy, wh, conf), 4)
|
162 |
+
z.append(y.view(bs, -1, self.no))
|
163 |
+
|
164 |
+
if self.training:
|
165 |
+
out = x
|
166 |
+
elif self.end2end:
|
167 |
+
out = torch.cat(z, 1)
|
168 |
+
elif self.include_nms:
|
169 |
+
z = self.convert(z)
|
170 |
+
out = (z, )
|
171 |
+
elif self.concat:
|
172 |
+
out = torch.cat(z, 1)
|
173 |
+
else:
|
174 |
+
out = (torch.cat(z, 1), x)
|
175 |
+
|
176 |
+
return out
|
177 |
+
|
178 |
+
def fuse(self):
|
179 |
+
print("IDetect.fuse")
|
180 |
+
# fuse ImplicitA and Convolution
|
181 |
+
for i in range(len(self.m)):
|
182 |
+
c1,c2,_,_ = self.m[i].weight.shape
|
183 |
+
c1_,c2_, _,_ = self.ia[i].implicit.shape
|
184 |
+
self.m[i].bias += torch.matmul(self.m[i].weight.reshape(c1,c2),self.ia[i].implicit.reshape(c2_,c1_)).squeeze(1)
|
185 |
+
|
186 |
+
# fuse ImplicitM and Convolution
|
187 |
+
for i in range(len(self.m)):
|
188 |
+
c1,c2, _,_ = self.im[i].implicit.shape
|
189 |
+
self.m[i].bias *= self.im[i].implicit.reshape(c2)
|
190 |
+
self.m[i].weight *= self.im[i].implicit.transpose(0,1)
|
191 |
+
|
192 |
+
@staticmethod
|
193 |
+
def _make_grid(nx=20, ny=20):
|
194 |
+
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
195 |
+
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
196 |
+
|
197 |
+
def convert(self, z):
|
198 |
+
z = torch.cat(z, 1)
|
199 |
+
box = z[:, :, :4]
|
200 |
+
conf = z[:, :, 4:5]
|
201 |
+
score = z[:, :, 5:]
|
202 |
+
score *= conf
|
203 |
+
convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
|
204 |
+
dtype=torch.float32,
|
205 |
+
device=z.device)
|
206 |
+
box @= convert_matrix
|
207 |
+
return (box, score)
|
208 |
+
|
209 |
+
|
210 |
+
class IKeypoint(nn.Module):
|
211 |
+
stride = None # strides computed during build
|
212 |
+
export = False # onnx export
|
213 |
+
|
214 |
+
def __init__(self, nc=80, anchors=(), nkpt=17, ch=(), inplace=True, dw_conv_kpt=False): # detection layer
|
215 |
+
super(IKeypoint, self).__init__()
|
216 |
+
self.nc = nc # number of classes
|
217 |
+
self.nkpt = nkpt
|
218 |
+
self.dw_conv_kpt = dw_conv_kpt
|
219 |
+
self.no_det=(nc + 5) # number of outputs per anchor for box and class
|
220 |
+
self.no_kpt = 3*self.nkpt ## number of outputs per anchor for keypoints
|
221 |
+
self.no = self.no_det+self.no_kpt
|
222 |
+
self.nl = len(anchors) # number of detection layers
|
223 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
224 |
+
self.grid = [torch.zeros(1)] * self.nl # init grid
|
225 |
+
self.flip_test = False
|
226 |
+
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
227 |
+
self.register_buffer('anchors', a) # shape(nl,na,2)
|
228 |
+
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
229 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no_det * self.na, 1) for x in ch) # output conv
|
230 |
+
|
231 |
+
self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
|
232 |
+
self.im = nn.ModuleList(ImplicitM(self.no_det * self.na) for _ in ch)
|
233 |
+
|
234 |
+
if self.nkpt is not None:
|
235 |
+
if self.dw_conv_kpt: #keypoint head is slightly more complex
|
236 |
+
self.m_kpt = nn.ModuleList(
|
237 |
+
nn.Sequential(DWConv(x, x, k=3), Conv(x,x),
|
238 |
+
DWConv(x, x, k=3), Conv(x, x),
|
239 |
+
DWConv(x, x, k=3), Conv(x,x),
|
240 |
+
DWConv(x, x, k=3), Conv(x, x),
|
241 |
+
DWConv(x, x, k=3), Conv(x, x),
|
242 |
+
DWConv(x, x, k=3), nn.Conv2d(x, self.no_kpt * self.na, 1)) for x in ch)
|
243 |
+
else: #keypoint head is a single convolution
|
244 |
+
self.m_kpt = nn.ModuleList(nn.Conv2d(x, self.no_kpt * self.na, 1) for x in ch)
|
245 |
+
|
246 |
+
self.inplace = inplace # use in-place ops (e.g. slice assignment)
|
247 |
+
|
248 |
+
def forward(self, x):
|
249 |
+
# x = x.copy() # for profiling
|
250 |
+
z = [] # inference output
|
251 |
+
self.training |= self.export
|
252 |
+
for i in range(self.nl):
|
253 |
+
if self.nkpt is None or self.nkpt==0:
|
254 |
+
x[i] = self.im[i](self.m[i](self.ia[i](x[i]))) # conv
|
255 |
+
else :
|
256 |
+
x[i] = torch.cat((self.im[i](self.m[i](self.ia[i](x[i]))), self.m_kpt[i](x[i])), axis=1)
|
257 |
+
|
258 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
259 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
260 |
+
x_det = x[i][..., :6]
|
261 |
+
x_kpt = x[i][..., 6:]
|
262 |
+
|
263 |
+
if not self.training: # inference
|
264 |
+
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
265 |
+
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
266 |
+
kpt_grid_x = self.grid[i][..., 0:1]
|
267 |
+
kpt_grid_y = self.grid[i][..., 1:2]
|
268 |
+
|
269 |
+
if self.nkpt == 0:
|
270 |
+
y = x[i].sigmoid()
|
271 |
+
else:
|
272 |
+
y = x_det.sigmoid()
|
273 |
+
|
274 |
+
if self.inplace:
|
275 |
+
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
276 |
+
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh
|
277 |
+
if self.nkpt != 0:
|
278 |
+
x_kpt[..., 0::3] = (x_kpt[..., ::3] * 2. - 0.5 + kpt_grid_x.repeat(1,1,1,1,17)) * self.stride[i] # xy
|
279 |
+
x_kpt[..., 1::3] = (x_kpt[..., 1::3] * 2. - 0.5 + kpt_grid_y.repeat(1,1,1,1,17)) * self.stride[i] # xy
|
280 |
+
#x_kpt[..., 0::3] = (x_kpt[..., ::3] + kpt_grid_x.repeat(1,1,1,1,17)) * self.stride[i] # xy
|
281 |
+
#x_kpt[..., 1::3] = (x_kpt[..., 1::3] + kpt_grid_y.repeat(1,1,1,1,17)) * self.stride[i] # xy
|
282 |
+
#print('=============')
|
283 |
+
#print(self.anchor_grid[i].shape)
|
284 |
+
#print(self.anchor_grid[i][...,0].unsqueeze(4).shape)
|
285 |
+
#print(x_kpt[..., 0::3].shape)
|
286 |
+
#x_kpt[..., 0::3] = ((x_kpt[..., 0::3].tanh() * 2.) ** 3 * self.anchor_grid[i][...,0].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_x.repeat(1,1,1,1,17) * self.stride[i] # xy
|
287 |
+
#x_kpt[..., 1::3] = ((x_kpt[..., 1::3].tanh() * 2.) ** 3 * self.anchor_grid[i][...,1].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_y.repeat(1,1,1,1,17) * self.stride[i] # xy
|
288 |
+
#x_kpt[..., 0::3] = (((x_kpt[..., 0::3].sigmoid() * 4.) ** 2 - 8.) * self.anchor_grid[i][...,0].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_x.repeat(1,1,1,1,17) * self.stride[i] # xy
|
289 |
+
#x_kpt[..., 1::3] = (((x_kpt[..., 1::3].sigmoid() * 4.) ** 2 - 8.) * self.anchor_grid[i][...,1].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_y.repeat(1,1,1,1,17) * self.stride[i] # xy
|
290 |
+
x_kpt[..., 2::3] = x_kpt[..., 2::3].sigmoid()
|
291 |
+
|
292 |
+
y = torch.cat((xy, wh, y[..., 4:], x_kpt), dim = -1)
|
293 |
+
|
294 |
+
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
|
295 |
+
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
296 |
+
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
297 |
+
if self.nkpt != 0:
|
298 |
+
y[..., 6:] = (y[..., 6:] * 2. - 0.5 + self.grid[i].repeat((1,1,1,1,self.nkpt))) * self.stride[i] # xy
|
299 |
+
y = torch.cat((xy, wh, y[..., 4:]), -1)
|
300 |
+
|
301 |
+
z.append(y.view(bs, -1, self.no))
|
302 |
+
|
303 |
+
return x if self.training else (torch.cat(z, 1), x)
|
304 |
+
|
305 |
+
@staticmethod
|
306 |
+
def _make_grid(nx=20, ny=20):
|
307 |
+
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
308 |
+
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
309 |
+
|
310 |
+
|
311 |
+
class IAuxDetect(nn.Module):
|
312 |
+
stride = None # strides computed during build
|
313 |
+
export = False # onnx export
|
314 |
+
end2end = False
|
315 |
+
include_nms = False
|
316 |
+
concat = False
|
317 |
+
|
318 |
+
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
319 |
+
super(IAuxDetect, self).__init__()
|
320 |
+
self.nc = nc # number of classes
|
321 |
+
self.no = nc + 5 # number of outputs per anchor
|
322 |
+
self.nl = len(anchors) # number of detection layers
|
323 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
324 |
+
self.grid = [torch.zeros(1)] * self.nl # init grid
|
325 |
+
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
326 |
+
self.register_buffer('anchors', a) # shape(nl,na,2)
|
327 |
+
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
328 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[:self.nl]) # output conv
|
329 |
+
self.m2 = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[self.nl:]) # output conv
|
330 |
+
|
331 |
+
self.ia = nn.ModuleList(ImplicitA(x) for x in ch[:self.nl])
|
332 |
+
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch[:self.nl])
|
333 |
+
|
334 |
+
def forward(self, x):
|
335 |
+
# x = x.copy() # for profiling
|
336 |
+
z = [] # inference output
|
337 |
+
self.training |= self.export
|
338 |
+
for i in range(self.nl):
|
339 |
+
x[i] = self.m[i](self.ia[i](x[i])) # conv
|
340 |
+
x[i] = self.im[i](x[i])
|
341 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
342 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
343 |
+
|
344 |
+
x[i+self.nl] = self.m2[i](x[i+self.nl])
|
345 |
+
x[i+self.nl] = x[i+self.nl].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
346 |
+
|
347 |
+
if not self.training: # inference
|
348 |
+
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
349 |
+
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
350 |
+
|
351 |
+
y = x[i].sigmoid()
|
352 |
+
if not torch.onnx.is_in_onnx_export():
|
353 |
+
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
354 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
355 |
+
else:
|
356 |
+
xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
|
357 |
+
xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) # new xy
|
358 |
+
wh = wh ** 2 * (4 * self.anchor_grid[i].data) # new wh
|
359 |
+
y = torch.cat((xy, wh, conf), 4)
|
360 |
+
z.append(y.view(bs, -1, self.no))
|
361 |
+
|
362 |
+
return x if self.training else (torch.cat(z, 1), x[:self.nl])
|
363 |
+
|
364 |
+
def fuseforward(self, x):
|
365 |
+
# x = x.copy() # for profiling
|
366 |
+
z = [] # inference output
|
367 |
+
self.training |= self.export
|
368 |
+
for i in range(self.nl):
|
369 |
+
x[i] = self.m[i](x[i]) # conv
|
370 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
371 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
372 |
+
|
373 |
+
if not self.training: # inference
|
374 |
+
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
375 |
+
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
376 |
+
|
377 |
+
y = x[i].sigmoid()
|
378 |
+
if not torch.onnx.is_in_onnx_export():
|
379 |
+
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
380 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
381 |
+
else:
|
382 |
+
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
383 |
+
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].data # wh
|
384 |
+
y = torch.cat((xy, wh, y[..., 4:]), -1)
|
385 |
+
z.append(y.view(bs, -1, self.no))
|
386 |
+
|
387 |
+
if self.training:
|
388 |
+
out = x
|
389 |
+
elif self.end2end:
|
390 |
+
out = torch.cat(z, 1)
|
391 |
+
elif self.include_nms:
|
392 |
+
z = self.convert(z)
|
393 |
+
out = (z, )
|
394 |
+
elif self.concat:
|
395 |
+
out = torch.cat(z, 1)
|
396 |
+
else:
|
397 |
+
out = (torch.cat(z, 1), x)
|
398 |
+
|
399 |
+
return out
|
400 |
+
|
401 |
+
def fuse(self):
|
402 |
+
print("IAuxDetect.fuse")
|
403 |
+
# fuse ImplicitA and Convolution
|
404 |
+
for i in range(len(self.m)):
|
405 |
+
c1,c2,_,_ = self.m[i].weight.shape
|
406 |
+
c1_,c2_, _,_ = self.ia[i].implicit.shape
|
407 |
+
self.m[i].bias += torch.matmul(self.m[i].weight.reshape(c1,c2),self.ia[i].implicit.reshape(c2_,c1_)).squeeze(1)
|
408 |
+
|
409 |
+
# fuse ImplicitM and Convolution
|
410 |
+
for i in range(len(self.m)):
|
411 |
+
c1,c2, _,_ = self.im[i].implicit.shape
|
412 |
+
self.m[i].bias *= self.im[i].implicit.reshape(c2)
|
413 |
+
self.m[i].weight *= self.im[i].implicit.transpose(0,1)
|
414 |
+
|
415 |
+
@staticmethod
|
416 |
+
def _make_grid(nx=20, ny=20):
|
417 |
+
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
418 |
+
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
419 |
+
|
420 |
+
def convert(self, z):
|
421 |
+
z = torch.cat(z, 1)
|
422 |
+
box = z[:, :, :4]
|
423 |
+
conf = z[:, :, 4:5]
|
424 |
+
score = z[:, :, 5:]
|
425 |
+
score *= conf
|
426 |
+
convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
|
427 |
+
dtype=torch.float32,
|
428 |
+
device=z.device)
|
429 |
+
box @= convert_matrix
|
430 |
+
return (box, score)
|
431 |
+
|
432 |
+
|
433 |
+
class IBin(nn.Module):
|
434 |
+
stride = None # strides computed during build
|
435 |
+
export = False # onnx export
|
436 |
+
|
437 |
+
def __init__(self, nc=80, anchors=(), ch=(), bin_count=21): # detection layer
|
438 |
+
super(IBin, self).__init__()
|
439 |
+
self.nc = nc # number of classes
|
440 |
+
self.bin_count = bin_count
|
441 |
+
|
442 |
+
self.w_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0)
|
443 |
+
self.h_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0)
|
444 |
+
# classes, x,y,obj
|
445 |
+
self.no = nc + 3 + \
|
446 |
+
self.w_bin_sigmoid.get_length() + self.h_bin_sigmoid.get_length() # w-bce, h-bce
|
447 |
+
# + self.x_bin_sigmoid.get_length() + self.y_bin_sigmoid.get_length()
|
448 |
+
|
449 |
+
self.nl = len(anchors) # number of detection layers
|
450 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
451 |
+
self.grid = [torch.zeros(1)] * self.nl # init grid
|
452 |
+
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
453 |
+
self.register_buffer('anchors', a) # shape(nl,na,2)
|
454 |
+
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
455 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
456 |
+
|
457 |
+
self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
|
458 |
+
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
|
459 |
+
|
460 |
+
def forward(self, x):
|
461 |
+
|
462 |
+
#self.x_bin_sigmoid.use_fw_regression = True
|
463 |
+
#self.y_bin_sigmoid.use_fw_regression = True
|
464 |
+
self.w_bin_sigmoid.use_fw_regression = True
|
465 |
+
self.h_bin_sigmoid.use_fw_regression = True
|
466 |
+
|
467 |
+
# x = x.copy() # for profiling
|
468 |
+
z = [] # inference output
|
469 |
+
self.training |= self.export
|
470 |
+
for i in range(self.nl):
|
471 |
+
x[i] = self.m[i](self.ia[i](x[i])) # conv
|
472 |
+
x[i] = self.im[i](x[i])
|
473 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
474 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
475 |
+
|
476 |
+
if not self.training: # inference
|
477 |
+
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
478 |
+
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
479 |
+
|
480 |
+
y = x[i].sigmoid()
|
481 |
+
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
482 |
+
#y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
483 |
+
|
484 |
+
|
485 |
+
#px = (self.x_bin_sigmoid.forward(y[..., 0:12]) + self.grid[i][..., 0]) * self.stride[i]
|
486 |
+
#py = (self.y_bin_sigmoid.forward(y[..., 12:24]) + self.grid[i][..., 1]) * self.stride[i]
|
487 |
+
|
488 |
+
pw = self.w_bin_sigmoid.forward(y[..., 2:24]) * self.anchor_grid[i][..., 0]
|
489 |
+
ph = self.h_bin_sigmoid.forward(y[..., 24:46]) * self.anchor_grid[i][..., 1]
|
490 |
+
|
491 |
+
#y[..., 0] = px
|
492 |
+
#y[..., 1] = py
|
493 |
+
y[..., 2] = pw
|
494 |
+
y[..., 3] = ph
|
495 |
+
|
496 |
+
y = torch.cat((y[..., 0:4], y[..., 46:]), dim=-1)
|
497 |
+
|
498 |
+
z.append(y.view(bs, -1, y.shape[-1]))
|
499 |
+
|
500 |
+
return x if self.training else (torch.cat(z, 1), x)
|
501 |
+
|
502 |
+
@staticmethod
|
503 |
+
def _make_grid(nx=20, ny=20):
|
504 |
+
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
505 |
+
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
506 |
+
|
507 |
+
|
508 |
+
class Model(nn.Module):
|
509 |
+
def __init__(self, cfg='yolor-csp-c.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
510 |
+
super(Model, self).__init__()
|
511 |
+
self.traced = False
|
512 |
+
if isinstance(cfg, dict):
|
513 |
+
self.yaml = cfg # model dict
|
514 |
+
else: # is *.yaml
|
515 |
+
import yaml # for torch hub
|
516 |
+
self.yaml_file = Path(cfg).name
|
517 |
+
with open(cfg) as f:
|
518 |
+
self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict
|
519 |
+
|
520 |
+
# Define model
|
521 |
+
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
522 |
+
if nc and nc != self.yaml['nc']:
|
523 |
+
logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
524 |
+
self.yaml['nc'] = nc # override yaml value
|
525 |
+
if anchors:
|
526 |
+
logger.info(f'Overriding model.yaml anchors with anchors={anchors}')
|
527 |
+
self.yaml['anchors'] = round(anchors) # override yaml value
|
528 |
+
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
529 |
+
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
530 |
+
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
|
531 |
+
|
532 |
+
# Build strides, anchors
|
533 |
+
m = self.model[-1] # Detect()
|
534 |
+
if isinstance(m, Detect):
|
535 |
+
s = 256 # 2x min stride
|
536 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
537 |
+
check_anchor_order(m)
|
538 |
+
m.anchors /= m.stride.view(-1, 1, 1)
|
539 |
+
self.stride = m.stride
|
540 |
+
self._initialize_biases() # only run once
|
541 |
+
# print('Strides: %s' % m.stride.tolist())
|
542 |
+
if isinstance(m, IDetect):
|
543 |
+
s = 256 # 2x min stride
|
544 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
545 |
+
check_anchor_order(m)
|
546 |
+
m.anchors /= m.stride.view(-1, 1, 1)
|
547 |
+
self.stride = m.stride
|
548 |
+
self._initialize_biases() # only run once
|
549 |
+
# print('Strides: %s' % m.stride.tolist())
|
550 |
+
if isinstance(m, IAuxDetect):
|
551 |
+
s = 256 # 2x min stride
|
552 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))[:4]]) # forward
|
553 |
+
#print(m.stride)
|
554 |
+
check_anchor_order(m)
|
555 |
+
m.anchors /= m.stride.view(-1, 1, 1)
|
556 |
+
self.stride = m.stride
|
557 |
+
self._initialize_aux_biases() # only run once
|
558 |
+
# print('Strides: %s' % m.stride.tolist())
|
559 |
+
if isinstance(m, IBin):
|
560 |
+
s = 256 # 2x min stride
|
561 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
562 |
+
check_anchor_order(m)
|
563 |
+
m.anchors /= m.stride.view(-1, 1, 1)
|
564 |
+
self.stride = m.stride
|
565 |
+
self._initialize_biases_bin() # only run once
|
566 |
+
# print('Strides: %s' % m.stride.tolist())
|
567 |
+
if isinstance(m, IKeypoint):
|
568 |
+
s = 256 # 2x min stride
|
569 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
570 |
+
check_anchor_order(m)
|
571 |
+
m.anchors /= m.stride.view(-1, 1, 1)
|
572 |
+
self.stride = m.stride
|
573 |
+
self._initialize_biases_kpt() # only run once
|
574 |
+
# print('Strides: %s' % m.stride.tolist())
|
575 |
+
|
576 |
+
# Init weights, biases
|
577 |
+
initialize_weights(self)
|
578 |
+
self.info()
|
579 |
+
logger.info('')
|
580 |
+
|
581 |
+
def forward(self, x, augment=False, profile=False):
|
582 |
+
if augment:
|
583 |
+
img_size = x.shape[-2:] # height, width
|
584 |
+
s = [1, 0.83, 0.67] # scales
|
585 |
+
f = [None, 3, None] # flips (2-ud, 3-lr)
|
586 |
+
y = [] # outputs
|
587 |
+
for si, fi in zip(s, f):
|
588 |
+
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
589 |
+
yi = self.forward_once(xi)[0] # forward
|
590 |
+
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
591 |
+
yi[..., :4] /= si # de-scale
|
592 |
+
if fi == 2:
|
593 |
+
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
|
594 |
+
elif fi == 3:
|
595 |
+
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
|
596 |
+
y.append(yi)
|
597 |
+
return torch.cat(y, 1), None # augmented inference, train
|
598 |
+
else:
|
599 |
+
return self.forward_once(x, profile) # single-scale inference, train
|
600 |
+
|
601 |
+
def forward_once(self, x, profile=False):
|
602 |
+
y, dt = [], [] # outputs
|
603 |
+
for m in self.model:
|
604 |
+
if m.f != -1: # if not from previous layer
|
605 |
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
606 |
+
|
607 |
+
if not hasattr(self, 'traced'):
|
608 |
+
self.traced=False
|
609 |
+
|
610 |
+
if self.traced:
|
611 |
+
if isinstance(m, Detect) or isinstance(m, IDetect) or isinstance(m, IAuxDetect) or isinstance(m, IKeypoint):
|
612 |
+
break
|
613 |
+
|
614 |
+
if profile:
|
615 |
+
c = isinstance(m, (Detect, IDetect, IAuxDetect, IBin))
|
616 |
+
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
|
617 |
+
for _ in range(10):
|
618 |
+
m(x.copy() if c else x)
|
619 |
+
t = time_synchronized()
|
620 |
+
for _ in range(10):
|
621 |
+
m(x.copy() if c else x)
|
622 |
+
dt.append((time_synchronized() - t) * 100)
|
623 |
+
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
|
624 |
+
|
625 |
+
x = m(x) # run
|
626 |
+
|
627 |
+
y.append(x if m.i in self.save else None) # save output
|
628 |
+
|
629 |
+
if profile:
|
630 |
+
print('%.1fms total' % sum(dt))
|
631 |
+
return x
|
632 |
+
|
633 |
+
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
634 |
+
# https://arxiv.org/abs/1708.02002 section 3.3
|
635 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
636 |
+
m = self.model[-1] # Detect() module
|
637 |
+
for mi, s in zip(m.m, m.stride): # from
|
638 |
+
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
639 |
+
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
640 |
+
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
641 |
+
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
642 |
+
|
643 |
+
def _initialize_aux_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
644 |
+
# https://arxiv.org/abs/1708.02002 section 3.3
|
645 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
646 |
+
m = self.model[-1] # Detect() module
|
647 |
+
for mi, mi2, s in zip(m.m, m.m2, m.stride): # from
|
648 |
+
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
649 |
+
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
650 |
+
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
651 |
+
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
652 |
+
b2 = mi2.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
653 |
+
b2.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
654 |
+
b2.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
655 |
+
mi2.bias = torch.nn.Parameter(b2.view(-1), requires_grad=True)
|
656 |
+
|
657 |
+
def _initialize_biases_bin(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
658 |
+
# https://arxiv.org/abs/1708.02002 section 3.3
|
659 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
660 |
+
m = self.model[-1] # Bin() module
|
661 |
+
bc = m.bin_count
|
662 |
+
for mi, s in zip(m.m, m.stride): # from
|
663 |
+
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
664 |
+
old = b[:, (0,1,2,bc+3)].data
|
665 |
+
obj_idx = 2*bc+4
|
666 |
+
b[:, :obj_idx].data += math.log(0.6 / (bc + 1 - 0.99))
|
667 |
+
b[:, obj_idx].data += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
668 |
+
b[:, (obj_idx+1):].data += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
669 |
+
b[:, (0,1,2,bc+3)].data = old
|
670 |
+
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
671 |
+
|
672 |
+
def _initialize_biases_kpt(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
673 |
+
# https://arxiv.org/abs/1708.02002 section 3.3
|
674 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
675 |
+
m = self.model[-1] # Detect() module
|
676 |
+
for mi, s in zip(m.m, m.stride): # from
|
677 |
+
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
678 |
+
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
679 |
+
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
680 |
+
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
681 |
+
|
682 |
+
def _print_biases(self):
|
683 |
+
m = self.model[-1] # Detect() module
|
684 |
+
for mi in m.m: # from
|
685 |
+
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
686 |
+
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
687 |
+
|
688 |
+
# def _print_weights(self):
|
689 |
+
# for m in self.model.modules():
|
690 |
+
# if type(m) is Bottleneck:
|
691 |
+
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
692 |
+
|
693 |
+
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
694 |
+
print('Fusing layers... ')
|
695 |
+
for m in self.model.modules():
|
696 |
+
if isinstance(m, RepConv):
|
697 |
+
#print(f" fuse_repvgg_block")
|
698 |
+
m.fuse_repvgg_block()
|
699 |
+
elif isinstance(m, RepConv_OREPA):
|
700 |
+
#print(f" switch_to_deploy")
|
701 |
+
m.switch_to_deploy()
|
702 |
+
elif type(m) is Conv and hasattr(m, 'bn'):
|
703 |
+
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
704 |
+
delattr(m, 'bn') # remove batchnorm
|
705 |
+
m.forward = m.fuseforward # update forward
|
706 |
+
elif isinstance(m, (IDetect, IAuxDetect)):
|
707 |
+
m.fuse()
|
708 |
+
m.forward = m.fuseforward
|
709 |
+
self.info()
|
710 |
+
return self
|
711 |
+
|
712 |
+
def nms(self, mode=True): # add or remove NMS module
|
713 |
+
present = type(self.model[-1]) is NMS # last layer is NMS
|
714 |
+
if mode and not present:
|
715 |
+
print('Adding NMS... ')
|
716 |
+
m = NMS() # module
|
717 |
+
m.f = -1 # from
|
718 |
+
m.i = self.model[-1].i + 1 # index
|
719 |
+
self.model.add_module(name='%s' % m.i, module=m) # add
|
720 |
+
self.eval()
|
721 |
+
elif not mode and present:
|
722 |
+
print('Removing NMS... ')
|
723 |
+
self.model = self.model[:-1] # remove
|
724 |
+
return self
|
725 |
+
|
726 |
+
def autoshape(self): # add autoShape module
|
727 |
+
print('Adding autoShape... ')
|
728 |
+
m = autoShape(self) # wrap model
|
729 |
+
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
|
730 |
+
return m
|
731 |
+
|
732 |
+
def info(self, verbose=False, img_size=640): # print model information
|
733 |
+
model_info(self, verbose, img_size)
|
734 |
+
|
735 |
+
|
736 |
+
def parse_model(d, ch): # model_dict, input_channels(3)
|
737 |
+
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
|
738 |
+
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
739 |
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
740 |
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
741 |
+
|
742 |
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
743 |
+
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
744 |
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
745 |
+
for j, a in enumerate(args):
|
746 |
+
try:
|
747 |
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
748 |
+
except:
|
749 |
+
pass
|
750 |
+
|
751 |
+
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
752 |
+
if m in [nn.Conv2d, Conv, RobustConv, RobustConv2, DWConv, GhostConv, RepConv, RepConv_OREPA, DownC,
|
753 |
+
SPP, SPPF, SPPCSPC, GhostSPPCSPC, MixConv2d, Focus, Stem, GhostStem, CrossConv,
|
754 |
+
Bottleneck, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC,
|
755 |
+
RepBottleneck, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,
|
756 |
+
Res, ResCSPA, ResCSPB, ResCSPC,
|
757 |
+
RepRes, RepResCSPA, RepResCSPB, RepResCSPC,
|
758 |
+
ResX, ResXCSPA, ResXCSPB, ResXCSPC,
|
759 |
+
RepResX, RepResXCSPA, RepResXCSPB, RepResXCSPC,
|
760 |
+
Ghost, GhostCSPA, GhostCSPB, GhostCSPC,
|
761 |
+
SwinTransformerBlock, STCSPA, STCSPB, STCSPC,
|
762 |
+
SwinTransformer2Block, ST2CSPA, ST2CSPB, ST2CSPC]:
|
763 |
+
c1, c2 = ch[f], args[0]
|
764 |
+
if c2 != no: # if not output
|
765 |
+
c2 = make_divisible(c2 * gw, 8)
|
766 |
+
|
767 |
+
args = [c1, c2, *args[1:]]
|
768 |
+
if m in [DownC, SPPCSPC, GhostSPPCSPC,
|
769 |
+
BottleneckCSPA, BottleneckCSPB, BottleneckCSPC,
|
770 |
+
RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,
|
771 |
+
ResCSPA, ResCSPB, ResCSPC,
|
772 |
+
RepResCSPA, RepResCSPB, RepResCSPC,
|
773 |
+
ResXCSPA, ResXCSPB, ResXCSPC,
|
774 |
+
RepResXCSPA, RepResXCSPB, RepResXCSPC,
|
775 |
+
GhostCSPA, GhostCSPB, GhostCSPC,
|
776 |
+
STCSPA, STCSPB, STCSPC,
|
777 |
+
ST2CSPA, ST2CSPB, ST2CSPC]:
|
778 |
+
args.insert(2, n) # number of repeats
|
779 |
+
n = 1
|
780 |
+
elif m is nn.BatchNorm2d:
|
781 |
+
args = [ch[f]]
|
782 |
+
elif m is Concat:
|
783 |
+
c2 = sum([ch[x] for x in f])
|
784 |
+
elif m is Chuncat:
|
785 |
+
c2 = sum([ch[x] for x in f])
|
786 |
+
elif m is Shortcut:
|
787 |
+
c2 = ch[f[0]]
|
788 |
+
elif m is Foldcut:
|
789 |
+
c2 = ch[f] // 2
|
790 |
+
elif m in [Detect, IDetect, IAuxDetect, IBin, IKeypoint]:
|
791 |
+
args.append([ch[x] for x in f])
|
792 |
+
if isinstance(args[1], int): # number of anchors
|
793 |
+
args[1] = [list(range(args[1] * 2))] * len(f)
|
794 |
+
elif m is ReOrg:
|
795 |
+
c2 = ch[f] * 4
|
796 |
+
elif m is Contract:
|
797 |
+
c2 = ch[f] * args[0] ** 2
|
798 |
+
elif m is Expand:
|
799 |
+
c2 = ch[f] // args[0] ** 2
|
800 |
+
else:
|
801 |
+
c2 = ch[f]
|
802 |
+
|
803 |
+
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
|
804 |
+
t = str(m)[8:-2].replace('__main__.', '') # module type
|
805 |
+
np = sum([x.numel() for x in m_.parameters()]) # number params
|
806 |
+
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
807 |
+
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
|
808 |
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
809 |
+
layers.append(m_)
|
810 |
+
if i == 0:
|
811 |
+
ch = []
|
812 |
+
ch.append(c2)
|
813 |
+
return nn.Sequential(*layers), sorted(save)
|
814 |
+
|
815 |
+
|
816 |
+
if __name__ == '__main__':
|
817 |
+
parser = argparse.ArgumentParser()
|
818 |
+
parser.add_argument('--cfg', type=str, default='yolor-csp-c.yaml', help='model.yaml')
|
819 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
820 |
+
parser.add_argument('--profile', action='store_true', help='profile model speed')
|
821 |
+
opt = parser.parse_args()
|
822 |
+
opt.cfg = check_file(opt.cfg) # check file
|
823 |
+
set_logging()
|
824 |
+
device = select_device(opt.device)
|
825 |
+
|
826 |
+
# Create model
|
827 |
+
model = Model(opt.cfg).to(device)
|
828 |
+
model.train()
|
829 |
+
|
830 |
+
if opt.profile:
|
831 |
+
img = torch.rand(1, 3, 640, 640).to(device)
|
832 |
+
y = model(img, profile=True)
|
833 |
+
|
834 |
+
# Profile
|
835 |
+
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
|
836 |
+
# y = model(img, profile=True)
|
837 |
+
|
838 |
+
# Tensorboard
|
839 |
+
# from torch.utils.tensorboard import SummaryWriter
|
840 |
+
# tb_writer = SummaryWriter()
|
841 |
+
# print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
|
842 |
+
# tb_writer.add_graph(model.model, img) # add model to tensorboard
|
843 |
+
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
|