|
import gradio as gr |
|
import os |
|
|
|
os.system('git clone https://github.com/WongKinYiu/yolov7.git') |
|
|
|
|
|
def detect(inp): |
|
os.system('python ./yolov7/detect.py --weights best.pt --conf 0.25 --img-size 640 --source f{inp} "--project","./yolov7/runs/detect ') |
|
otp=inp.split('/')[2] |
|
return f"./yolov7/runs/detect/exp/*" |
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
from pathlib import Path |
|
import cv2 |
|
import torch |
|
import numpy as np |
|
from numpy import random |
|
from . import models |
|
from models.experimental import attempt_load |
|
from utils.datasets import LoadStreams, LoadImages |
|
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier,scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path |
|
from utils.plots import plot_one_box |
|
from utils.torch_utils import select_device, time_synchronized |
|
|
|
|
|
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): |
|
|
|
shape = img.shape[:2] |
|
if isinstance(new_shape, int): |
|
new_shape = (new_shape, new_shape) |
|
|
|
|
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) |
|
if not scaleup: |
|
r = min(r, 1.0) |
|
|
|
|
|
ratio = r, r |
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) |
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] |
|
if auto: |
|
dw, dh = np.mod(dw, stride), np.mod(dh, stride) |
|
elif scaleFill: |
|
dw, dh = 0.0, 0.0 |
|
new_unpad = (new_shape[1], new_shape[0]) |
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] |
|
|
|
dw /= 2 |
|
dh /= 2 |
|
|
|
if shape[::-1] != new_unpad: |
|
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) |
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) |
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) |
|
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) |
|
return img, ratio, (dw, dh) |
|
|
|
|
|
opt = { |
|
|
|
"weights": "best.pt", |
|
"yaml" : "custom.yaml", |
|
"img-size": 640, |
|
"conf-thres": 0.25, |
|
"iou-thres" : 0.45, |
|
"device" : '0', |
|
"classes" : classes_to_filter |
|
|
|
} |
|
|
|
def detect2(inp): |
|
with torch.no_grad(): |
|
weights, imgsz = opt['weights'], opt['img-size'] |
|
set_logging() |
|
device = select_device(opt['device']) |
|
half = device.type != 'cpu' |
|
model = attempt_load(weights, map_location=device) |
|
stride = int(model.stride.max()) |
|
imgsz = check_img_size(imgsz, s=stride) |
|
if half: |
|
model.half() |
|
|
|
names = model.module.names if hasattr(model, 'module') else model.names |
|
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] |
|
if device.type != 'cpu': |
|
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) |
|
|
|
img0 = cv2.imread(inp) |
|
img = letterbox(img0, imgsz, stride=stride)[0] |
|
img = img[:, :, ::-1].transpose(2, 0, 1) |
|
img = np.ascontiguousarray(img) |
|
img = torch.from_numpy(img).to(device) |
|
img = img.half() if half else img.float() |
|
img /= 255.0 |
|
if img.ndimension() == 3: |
|
img = img.unsqueeze(0) |
|
|
|
|
|
t1 = time_synchronized() |
|
pred = model(img, augment= False)[0] |
|
|
|
|
|
classes = None |
|
if opt['classes']: |
|
classes = [] |
|
for class_name in opt['classes']: |
|
|
|
classes.append(names.index(class_name)) |
|
|
|
if classes: |
|
|
|
classes = [i for i in range(len(names)) if i not in classes] |
|
|
|
|
|
pred = non_max_suppression(pred, opt['conf-thres'], opt['iou-thres'], classes= [17], agnostic= False) |
|
t2 = time_synchronized() |
|
for i, det in enumerate(pred): |
|
s = '' |
|
s += '%gx%g ' % img.shape[2:] |
|
gn = torch.tensor(img0.shape)[[1, 0, 1, 0]] |
|
if len(det): |
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round() |
|
|
|
for c in det[:, -1].unique(): |
|
n = (det[:, -1] == c).sum() |
|
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " |
|
|
|
for *xyxy, conf, cls in reversed(det): |
|
|
|
label = f'{names[int(cls)]} {conf:.2f}' |
|
plot_one_box(xyxy, img0, label=label, color=colors[int(cls)], line_thickness=3) |
|
return img0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inp = gr.inputs.Image(type="filepath", label="Input") |
|
outputs=gr.outputs.Image(type="pil", label="Output Image") |
|
|
|
|
|
|
|
io=gr.Interface(fn=detect2, inputs=inp, outputs=output, title='Pot Hole Detection With Custom YOLOv7 ',examples=[["Examples/img-300_jpg.rf.6b7b035dff1cda092ce3dc22be8d0135.jpg"]]) |
|
|
|
io.launch(debug=True,share=False) |
|
|
|
|