Sa-m commited on
Commit
032c677
1 Parent(s): 78e3a4a

Upload metrics.py

Browse files
Files changed (1) hide show
  1. utils/metrics.py +223 -0
utils/metrics.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model validation metrics
2
+
3
+ from pathlib import Path
4
+
5
+ import matplotlib.pyplot as plt
6
+ import numpy as np
7
+ import torch
8
+
9
+ from . import general
10
+
11
+
12
+ def fitness(x):
13
+ # Model fitness as a weighted combination of metrics
14
+ w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
15
+ return (x[:, :4] * w).sum(1)
16
+
17
+
18
+ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
19
+ """ Compute the average precision, given the recall and precision curves.
20
+ Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
21
+ # Arguments
22
+ tp: True positives (nparray, nx1 or nx10).
23
+ conf: Objectness value from 0-1 (nparray).
24
+ pred_cls: Predicted object classes (nparray).
25
+ target_cls: True object classes (nparray).
26
+ plot: Plot precision-recall curve at mAP@0.5
27
+ save_dir: Plot save directory
28
+ # Returns
29
+ The average precision as computed in py-faster-rcnn.
30
+ """
31
+
32
+ # Sort by objectness
33
+ i = np.argsort(-conf)
34
+ tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
35
+
36
+ # Find unique classes
37
+ unique_classes = np.unique(target_cls)
38
+ nc = unique_classes.shape[0] # number of classes, number of detections
39
+
40
+ # Create Precision-Recall curve and compute AP for each class
41
+ px, py = np.linspace(0, 1, 1000), [] # for plotting
42
+ ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
43
+ for ci, c in enumerate(unique_classes):
44
+ i = pred_cls == c
45
+ n_l = (target_cls == c).sum() # number of labels
46
+ n_p = i.sum() # number of predictions
47
+
48
+ if n_p == 0 or n_l == 0:
49
+ continue
50
+ else:
51
+ # Accumulate FPs and TPs
52
+ fpc = (1 - tp[i]).cumsum(0)
53
+ tpc = tp[i].cumsum(0)
54
+
55
+ # Recall
56
+ recall = tpc / (n_l + 1e-16) # recall curve
57
+ r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
58
+
59
+ # Precision
60
+ precision = tpc / (tpc + fpc) # precision curve
61
+ p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
62
+
63
+ # AP from recall-precision curve
64
+ for j in range(tp.shape[1]):
65
+ ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
66
+ if plot and j == 0:
67
+ py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
68
+
69
+ # Compute F1 (harmonic mean of precision and recall)
70
+ f1 = 2 * p * r / (p + r + 1e-16)
71
+ if plot:
72
+ plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
73
+ plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
74
+ plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
75
+ plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
76
+
77
+ i = f1.mean(0).argmax() # max F1 index
78
+ return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
79
+
80
+
81
+ def compute_ap(recall, precision):
82
+ """ Compute the average precision, given the recall and precision curves
83
+ # Arguments
84
+ recall: The recall curve (list)
85
+ precision: The precision curve (list)
86
+ # Returns
87
+ Average precision, precision curve, recall curve
88
+ """
89
+
90
+ # Append sentinel values to beginning and end
91
+ mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
92
+ mpre = np.concatenate(([1.], precision, [0.]))
93
+
94
+ # Compute the precision envelope
95
+ mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
96
+
97
+ # Integrate area under curve
98
+ method = 'interp' # methods: 'continuous', 'interp'
99
+ if method == 'interp':
100
+ x = np.linspace(0, 1, 101) # 101-point interp (COCO)
101
+ ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
102
+ else: # 'continuous'
103
+ i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
104
+ ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
105
+
106
+ return ap, mpre, mrec
107
+
108
+
109
+ class ConfusionMatrix:
110
+ # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
111
+ def __init__(self, nc, conf=0.25, iou_thres=0.45):
112
+ self.matrix = np.zeros((nc + 1, nc + 1))
113
+ self.nc = nc # number of classes
114
+ self.conf = conf
115
+ self.iou_thres = iou_thres
116
+
117
+ def process_batch(self, detections, labels):
118
+ """
119
+ Return intersection-over-union (Jaccard index) of boxes.
120
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
121
+ Arguments:
122
+ detections (Array[N, 6]), x1, y1, x2, y2, conf, class
123
+ labels (Array[M, 5]), class, x1, y1, x2, y2
124
+ Returns:
125
+ None, updates confusion matrix accordingly
126
+ """
127
+ detections = detections[detections[:, 4] > self.conf]
128
+ gt_classes = labels[:, 0].int()
129
+ detection_classes = detections[:, 5].int()
130
+ iou = general.box_iou(labels[:, 1:], detections[:, :4])
131
+
132
+ x = torch.where(iou > self.iou_thres)
133
+ if x[0].shape[0]:
134
+ matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
135
+ if x[0].shape[0] > 1:
136
+ matches = matches[matches[:, 2].argsort()[::-1]]
137
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
138
+ matches = matches[matches[:, 2].argsort()[::-1]]
139
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
140
+ else:
141
+ matches = np.zeros((0, 3))
142
+
143
+ n = matches.shape[0] > 0
144
+ m0, m1, _ = matches.transpose().astype(np.int16)
145
+ for i, gc in enumerate(gt_classes):
146
+ j = m0 == i
147
+ if n and sum(j) == 1:
148
+ self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
149
+ else:
150
+ self.matrix[self.nc, gc] += 1 # background FP
151
+
152
+ if n:
153
+ for i, dc in enumerate(detection_classes):
154
+ if not any(m1 == i):
155
+ self.matrix[dc, self.nc] += 1 # background FN
156
+
157
+ def matrix(self):
158
+ return self.matrix
159
+
160
+ def plot(self, save_dir='', names=()):
161
+ try:
162
+ import seaborn as sn
163
+
164
+ array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
165
+ array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
166
+
167
+ fig = plt.figure(figsize=(12, 9), tight_layout=True)
168
+ sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
169
+ labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
170
+ sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
171
+ xticklabels=names + ['background FP'] if labels else "auto",
172
+ yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
173
+ fig.axes[0].set_xlabel('True')
174
+ fig.axes[0].set_ylabel('Predicted')
175
+ fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
176
+ except Exception as e:
177
+ pass
178
+
179
+ def print(self):
180
+ for i in range(self.nc + 1):
181
+ print(' '.join(map(str, self.matrix[i])))
182
+
183
+
184
+ # Plots ----------------------------------------------------------------------------------------------------------------
185
+
186
+ def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
187
+ # Precision-recall curve
188
+ fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
189
+ py = np.stack(py, axis=1)
190
+
191
+ if 0 < len(names) < 21: # display per-class legend if < 21 classes
192
+ for i, y in enumerate(py.T):
193
+ ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
194
+ else:
195
+ ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
196
+
197
+ ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
198
+ ax.set_xlabel('Recall')
199
+ ax.set_ylabel('Precision')
200
+ ax.set_xlim(0, 1)
201
+ ax.set_ylim(0, 1)
202
+ plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
203
+ fig.savefig(Path(save_dir), dpi=250)
204
+
205
+
206
+ def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
207
+ # Metric-confidence curve
208
+ fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
209
+
210
+ if 0 < len(names) < 21: # display per-class legend if < 21 classes
211
+ for i, y in enumerate(py):
212
+ ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
213
+ else:
214
+ ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
215
+
216
+ y = py.mean(0)
217
+ ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
218
+ ax.set_xlabel(xlabel)
219
+ ax.set_ylabel(ylabel)
220
+ ax.set_xlim(0, 1)
221
+ ax.set_ylim(0, 1)
222
+ plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
223
+ fig.savefig(Path(save_dir), dpi=250)