Spaces:
Runtime error
Runtime error
# YOLOR general utils | |
import glob | |
import logging | |
import math | |
import os | |
import platform | |
import random | |
import re | |
import subprocess | |
import time | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import pandas as pd | |
import torch | |
import torchvision | |
import yaml | |
from utils.google_utils import gsutil_getsize | |
from utils.metrics import fitness | |
from utils.torch_utils import init_torch_seeds | |
# Settings | |
torch.set_printoptions(linewidth=320, precision=5, profile='long') | |
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 | |
pd.options.display.max_columns = 10 | |
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) | |
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads | |
def set_logging(rank=-1): | |
logging.basicConfig( | |
format="%(message)s", | |
level=logging.INFO if rank in [-1, 0] else logging.WARN) | |
def init_seeds(seed=0): | |
# Initialize random number generator (RNG) seeds | |
random.seed(seed) | |
np.random.seed(seed) | |
init_torch_seeds(seed) | |
def get_latest_run(search_dir='.'): | |
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from) | |
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) | |
return max(last_list, key=os.path.getctime) if last_list else '' | |
def isdocker(): | |
# Is environment a Docker container | |
return Path('/workspace').exists() # or Path('/.dockerenv').exists() | |
def emojis(str=''): | |
# Return platform-dependent emoji-safe version of string | |
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str | |
def check_online(): | |
# Check internet connectivity | |
import socket | |
try: | |
socket.create_connection(("1.1.1.1", 443), 5) # check host accesability | |
return True | |
except OSError: | |
return False | |
def check_git_status(): | |
# Recommend 'git pull' if code is out of date | |
print(colorstr('github: '), end='') | |
try: | |
assert Path('.git').exists(), 'skipping check (not a git repository)' | |
assert not isdocker(), 'skipping check (Docker image)' | |
assert check_online(), 'skipping check (offline)' | |
cmd = 'git fetch && git config --get remote.origin.url' | |
url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url | |
branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out | |
n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind | |
if n > 0: | |
s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \ | |
f"Use 'git pull' to update or 'git clone {url}' to download latest." | |
else: | |
s = f'up to date with {url} ✅' | |
print(emojis(s)) # emoji-safe | |
except Exception as e: | |
print(e) | |
def check_requirements(requirements='requirements.txt', exclude=()): | |
# Check installed dependencies meet requirements (pass *.txt file or list of packages) | |
import pkg_resources as pkg | |
prefix = colorstr('red', 'bold', 'requirements:') | |
if isinstance(requirements, (str, Path)): # requirements.txt file | |
file = Path(requirements) | |
if not file.exists(): | |
print(f"{prefix} {file.resolve()} not found, check failed.") | |
return | |
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude] | |
else: # list or tuple of packages | |
requirements = [x for x in requirements if x not in exclude] | |
n = 0 # number of packages updates | |
for r in requirements: | |
try: | |
pkg.require(r) | |
except Exception as e: # DistributionNotFound or VersionConflict if requirements not met | |
n += 1 | |
print(f"{prefix} {e.req} not found and is required by YOLOR, attempting auto-update...") | |
print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode()) | |
if n: # if packages updated | |
source = file.resolve() if 'file' in locals() else requirements | |
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \ | |
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n" | |
print(emojis(s)) # emoji-safe | |
def check_img_size(img_size, s=32): | |
# Verify img_size is a multiple of stride s | |
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple | |
if new_size != img_size: | |
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size)) | |
return new_size | |
def check_imshow(): | |
# Check if environment supports image displays | |
try: | |
assert not isdocker(), 'cv2.imshow() is disabled in Docker environments' | |
cv2.imshow('test', np.zeros((1, 1, 3))) | |
cv2.waitKey(1) | |
cv2.destroyAllWindows() | |
cv2.waitKey(1) | |
return True | |
except Exception as e: | |
print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}') | |
return False | |
def check_file(file): | |
# Search for file if not found | |
if Path(file).is_file() or file == '': | |
return file | |
else: | |
files = glob.glob('./**/' + file, recursive=True) # find file | |
assert len(files), f'File Not Found: {file}' # assert file was found | |
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique | |
return files[0] # return file | |
def check_dataset(dict): | |
# Download dataset if not found locally | |
val, s = dict.get('val'), dict.get('download') | |
if val and len(val): | |
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path | |
if not all(x.exists() for x in val): | |
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()]) | |
if s and len(s): # download script | |
print('Downloading %s ...' % s) | |
if s.startswith('http') and s.endswith('.zip'): # URL | |
f = Path(s).name # filename | |
torch.hub.download_url_to_file(s, f) | |
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip | |
else: # bash script | |
r = os.system(s) | |
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value | |
else: | |
raise Exception('Dataset not found.') | |
def make_divisible(x, divisor): | |
# Returns x evenly divisible by divisor | |
return math.ceil(x / divisor) * divisor | |
def clean_str(s): | |
# Cleans a string by replacing special characters with underscore _ | |
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s) | |
def one_cycle(y1=0.0, y2=1.0, steps=100): | |
# lambda function for sinusoidal ramp from y1 to y2 | |
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 | |
def colorstr(*input): | |
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') | |
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string | |
colors = {'black': '\033[30m', # basic colors | |
'red': '\033[31m', | |
'green': '\033[32m', | |
'yellow': '\033[33m', | |
'blue': '\033[34m', | |
'magenta': '\033[35m', | |
'cyan': '\033[36m', | |
'white': '\033[37m', | |
'bright_black': '\033[90m', # bright colors | |
'bright_red': '\033[91m', | |
'bright_green': '\033[92m', | |
'bright_yellow': '\033[93m', | |
'bright_blue': '\033[94m', | |
'bright_magenta': '\033[95m', | |
'bright_cyan': '\033[96m', | |
'bright_white': '\033[97m', | |
'end': '\033[0m', # misc | |
'bold': '\033[1m', | |
'underline': '\033[4m'} | |
return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] | |
def labels_to_class_weights(labels, nc=80): | |
# Get class weights (inverse frequency) from training labels | |
if labels[0] is None: # no labels loaded | |
return torch.Tensor() | |
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO | |
classes = labels[:, 0].astype(np.int) # labels = [class xywh] | |
weights = np.bincount(classes, minlength=nc) # occurrences per class | |
# Prepend gridpoint count (for uCE training) | |
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image | |
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start | |
weights[weights == 0] = 1 # replace empty bins with 1 | |
weights = 1 / weights # number of targets per class | |
weights /= weights.sum() # normalize | |
return torch.from_numpy(weights) | |
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): | |
# Produces image weights based on class_weights and image contents | |
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels]) | |
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) | |
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample | |
return image_weights | |
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) | |
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ | |
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') | |
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') | |
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco | |
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet | |
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, | |
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, | |
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] | |
return x | |
def xyxy2xywh(x): | |
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right | |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center | |
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center | |
y[:, 2] = x[:, 2] - x[:, 0] # width | |
y[:, 3] = x[:, 3] - x[:, 1] # height | |
return y | |
def xywh2xyxy(x): | |
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right | |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x | |
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y | |
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x | |
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y | |
return y | |
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): | |
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right | |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x | |
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y | |
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x | |
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y | |
return y | |
def xyn2xy(x, w=640, h=640, padw=0, padh=0): | |
# Convert normalized segments into pixel segments, shape (n,2) | |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
y[:, 0] = w * x[:, 0] + padw # top left x | |
y[:, 1] = h * x[:, 1] + padh # top left y | |
return y | |
def segment2box(segment, width=640, height=640): | |
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) | |
x, y = segment.T # segment xy | |
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) | |
x, y, = x[inside], y[inside] | |
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy | |
def segments2boxes(segments): | |
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) | |
boxes = [] | |
for s in segments: | |
x, y = s.T # segment xy | |
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy | |
return xyxy2xywh(np.array(boxes)) # cls, xywh | |
def resample_segments(segments, n=1000): | |
# Up-sample an (n,2) segment | |
for i, s in enumerate(segments): | |
x = np.linspace(0, len(s) - 1, n) | |
xp = np.arange(len(s)) | |
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy | |
return segments | |
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): | |
# Rescale coords (xyxy) from img1_shape to img0_shape | |
if ratio_pad is None: # calculate from img0_shape | |
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new | |
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding | |
else: | |
gain = ratio_pad[0][0] | |
pad = ratio_pad[1] | |
coords[:, [0, 2]] -= pad[0] # x padding | |
coords[:, [1, 3]] -= pad[1] # y padding | |
coords[:, :4] /= gain | |
clip_coords(coords, img0_shape) | |
return coords | |
def clip_coords(boxes, img_shape): | |
# Clip bounding xyxy bounding boxes to image shape (height, width) | |
boxes[:, 0].clamp_(0, img_shape[1]) # x1 | |
boxes[:, 1].clamp_(0, img_shape[0]) # y1 | |
boxes[:, 2].clamp_(0, img_shape[1]) # x2 | |
boxes[:, 3].clamp_(0, img_shape[0]) # y2 | |
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): | |
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 | |
box2 = box2.T | |
# Get the coordinates of bounding boxes | |
if x1y1x2y2: # x1, y1, x2, y2 = box1 | |
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] | |
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] | |
else: # transform from xywh to xyxy | |
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 | |
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 | |
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 | |
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 | |
# Intersection area | |
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ | |
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) | |
# Union Area | |
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps | |
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps | |
union = w1 * h1 + w2 * h2 - inter + eps | |
iou = inter / union | |
if GIoU or DIoU or CIoU: | |
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width | |
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height | |
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 | |
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared | |
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + | |
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared | |
if DIoU: | |
return iou - rho2 / c2 # DIoU | |
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 | |
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2) | |
with torch.no_grad(): | |
alpha = v / (v - iou + (1 + eps)) | |
return iou - (rho2 / c2 + v * alpha) # CIoU | |
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf | |
c_area = cw * ch + eps # convex area | |
return iou - (c_area - union) / c_area # GIoU | |
else: | |
return iou # IoU | |
def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9): | |
# Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4 | |
box2 = box2.T | |
# Get the coordinates of bounding boxes | |
if x1y1x2y2: # x1, y1, x2, y2 = box1 | |
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] | |
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] | |
else: # transform from xywh to xyxy | |
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 | |
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 | |
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 | |
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 | |
# Intersection area | |
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ | |
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) | |
# Union Area | |
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps | |
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps | |
union = w1 * h1 + w2 * h2 - inter + eps | |
# change iou into pow(iou+eps) | |
# iou = inter / union | |
iou = torch.pow(inter/union + eps, alpha) | |
# beta = 2 * alpha | |
if GIoU or DIoU or CIoU: | |
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width | |
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height | |
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 | |
c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal | |
rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2) | |
rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2) | |
rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha # center distance | |
if DIoU: | |
return iou - rho2 / c2 # DIoU | |
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 | |
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) | |
with torch.no_grad(): | |
alpha_ciou = v / ((1 + eps) - inter / union + v) | |
# return iou - (rho2 / c2 + v * alpha_ciou) # CIoU | |
return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU | |
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf | |
# c_area = cw * ch + eps # convex area | |
# return iou - (c_area - union) / c_area # GIoU | |
c_area = torch.max(cw * ch + eps, union) # convex area | |
return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU | |
else: | |
return iou # torch.log(iou+eps) or iou | |
def box_iou(box1, box2): | |
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py | |
""" | |
Return intersection-over-union (Jaccard index) of boxes. | |
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. | |
Arguments: | |
box1 (Tensor[N, 4]) | |
box2 (Tensor[M, 4]) | |
Returns: | |
iou (Tensor[N, M]): the NxM matrix containing the pairwise | |
IoU values for every element in boxes1 and boxes2 | |
""" | |
def box_area(box): | |
# box = 4xn | |
return (box[2] - box[0]) * (box[3] - box[1]) | |
area1 = box_area(box1.T) | |
area2 = box_area(box2.T) | |
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) | |
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) | |
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter) | |
def wh_iou(wh1, wh2): | |
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 | |
wh1 = wh1[:, None] # [N,1,2] | |
wh2 = wh2[None] # [1,M,2] | |
inter = torch.min(wh1, wh2).prod(2) # [N,M] | |
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter) | |
def box_giou(box1, box2): | |
""" | |
Return generalized intersection-over-union (Jaccard index) between two sets of boxes. | |
Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with | |
``0 <= x1 < x2`` and ``0 <= y1 < y2``. | |
Args: | |
boxes1 (Tensor[N, 4]): first set of boxes | |
boxes2 (Tensor[M, 4]): second set of boxes | |
Returns: | |
Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values | |
for every element in boxes1 and boxes2 | |
""" | |
def box_area(box): | |
# box = 4xn | |
return (box[2] - box[0]) * (box[3] - box[1]) | |
area1 = box_area(box1.T) | |
area2 = box_area(box2.T) | |
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) | |
union = (area1[:, None] + area2 - inter) | |
iou = inter / union | |
lti = torch.min(box1[:, None, :2], box2[:, :2]) | |
rbi = torch.max(box1[:, None, 2:], box2[:, 2:]) | |
whi = (rbi - lti).clamp(min=0) # [N,M,2] | |
areai = whi[:, :, 0] * whi[:, :, 1] | |
return iou - (areai - union) / areai | |
def box_ciou(box1, box2, eps: float = 1e-7): | |
""" | |
Return complete intersection-over-union (Jaccard index) between two sets of boxes. | |
Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with | |
``0 <= x1 < x2`` and ``0 <= y1 < y2``. | |
Args: | |
boxes1 (Tensor[N, 4]): first set of boxes | |
boxes2 (Tensor[M, 4]): second set of boxes | |
eps (float, optional): small number to prevent division by zero. Default: 1e-7 | |
Returns: | |
Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values | |
for every element in boxes1 and boxes2 | |
""" | |
def box_area(box): | |
# box = 4xn | |
return (box[2] - box[0]) * (box[3] - box[1]) | |
area1 = box_area(box1.T) | |
area2 = box_area(box2.T) | |
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) | |
union = (area1[:, None] + area2 - inter) | |
iou = inter / union | |
lti = torch.min(box1[:, None, :2], box2[:, :2]) | |
rbi = torch.max(box1[:, None, 2:], box2[:, 2:]) | |
whi = (rbi - lti).clamp(min=0) # [N,M,2] | |
diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps | |
# centers of boxes | |
x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2 | |
y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2 | |
x_g = (box2[:, 0] + box2[:, 2]) / 2 | |
y_g = (box2[:, 1] + box2[:, 3]) / 2 | |
# The distance between boxes' centers squared. | |
centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2 | |
w_pred = box1[:, None, 2] - box1[:, None, 0] | |
h_pred = box1[:, None, 3] - box1[:, None, 1] | |
w_gt = box2[:, 2] - box2[:, 0] | |
h_gt = box2[:, 3] - box2[:, 1] | |
v = (4 / (torch.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2) | |
with torch.no_grad(): | |
alpha = v / (1 - iou + v + eps) | |
return iou - (centers_distance_squared / diagonal_distance_squared) - alpha * v | |
def box_diou(box1, box2, eps: float = 1e-7): | |
""" | |
Return distance intersection-over-union (Jaccard index) between two sets of boxes. | |
Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with | |
``0 <= x1 < x2`` and ``0 <= y1 < y2``. | |
Args: | |
boxes1 (Tensor[N, 4]): first set of boxes | |
boxes2 (Tensor[M, 4]): second set of boxes | |
eps (float, optional): small number to prevent division by zero. Default: 1e-7 | |
Returns: | |
Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values | |
for every element in boxes1 and boxes2 | |
""" | |
def box_area(box): | |
# box = 4xn | |
return (box[2] - box[0]) * (box[3] - box[1]) | |
area1 = box_area(box1.T) | |
area2 = box_area(box2.T) | |
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) | |
union = (area1[:, None] + area2 - inter) | |
iou = inter / union | |
lti = torch.min(box1[:, None, :2], box2[:, :2]) | |
rbi = torch.max(box1[:, None, 2:], box2[:, 2:]) | |
whi = (rbi - lti).clamp(min=0) # [N,M,2] | |
diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps | |
# centers of boxes | |
x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2 | |
y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2 | |
x_g = (box2[:, 0] + box2[:, 2]) / 2 | |
y_g = (box2[:, 1] + box2[:, 3]) / 2 | |
# The distance between boxes' centers squared. | |
centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2 | |
# The distance IoU is the IoU penalized by a normalized | |
# distance between boxes' centers squared. | |
return iou - (centers_distance_squared / diagonal_distance_squared) | |
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, | |
labels=()): | |
"""Runs Non-Maximum Suppression (NMS) on inference results | |
Returns: | |
list of detections, on (n,6) tensor per image [xyxy, conf, cls] | |
""" | |
nc = prediction.shape[2] - 5 # number of classes | |
xc = prediction[..., 4] > conf_thres # candidates | |
# Settings | |
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height | |
max_det = 300 # maximum number of detections per image | |
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() | |
time_limit = 10.0 # seconds to quit after | |
redundant = True # require redundant detections | |
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) | |
merge = False # use merge-NMS | |
t = time.time() | |
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] | |
for xi, x in enumerate(prediction): # image index, image inference | |
# Apply constraints | |
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height | |
x = x[xc[xi]] # confidence | |
# Cat apriori labels if autolabelling | |
if labels and len(labels[xi]): | |
l = labels[xi] | |
v = torch.zeros((len(l), nc + 5), device=x.device) | |
v[:, :4] = l[:, 1:5] # box | |
v[:, 4] = 1.0 # conf | |
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls | |
x = torch.cat((x, v), 0) | |
# If none remain process next image | |
if not x.shape[0]: | |
continue | |
# Compute conf | |
if nc == 1: | |
x[:, 5:] = x[:, 4:5] # for models with one class, cls_loss is 0 and cls_conf is always 0.5, | |
# so there is no need to multiplicate. | |
else: | |
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf | |
# Box (center x, center y, width, height) to (x1, y1, x2, y2) | |
box = xywh2xyxy(x[:, :4]) | |
# Detections matrix nx6 (xyxy, conf, cls) | |
if multi_label: | |
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T | |
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) | |
else: # best class only | |
conf, j = x[:, 5:].max(1, keepdim=True) | |
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] | |
# Filter by class | |
if classes is not None: | |
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] | |
# Apply finite constraint | |
# if not torch.isfinite(x).all(): | |
# x = x[torch.isfinite(x).all(1)] | |
# Check shape | |
n = x.shape[0] # number of boxes | |
if not n: # no boxes | |
continue | |
elif n > max_nms: # excess boxes | |
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence | |
# Batched NMS | |
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes | |
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores | |
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS | |
if i.shape[0] > max_det: # limit detections | |
i = i[:max_det] | |
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) | |
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) | |
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix | |
weights = iou * scores[None] # box weights | |
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes | |
if redundant: | |
i = i[iou.sum(1) > 1] # require redundancy | |
output[xi] = x[i] | |
if (time.time() - t) > time_limit: | |
print(f'WARNING: NMS time limit {time_limit}s exceeded') | |
break # time limit exceeded | |
return output | |
def non_max_suppression_kpt(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, | |
labels=(), kpt_label=False, nc=None, nkpt=None): | |
"""Runs Non-Maximum Suppression (NMS) on inference results | |
Returns: | |
list of detections, on (n,6) tensor per image [xyxy, conf, cls] | |
""" | |
if nc is None: | |
nc = prediction.shape[2] - 5 if not kpt_label else prediction.shape[2] - 56 # number of classes | |
xc = prediction[..., 4] > conf_thres # candidates | |
# Settings | |
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height | |
max_det = 300 # maximum number of detections per image | |
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() | |
time_limit = 10.0 # seconds to quit after | |
redundant = True # require redundant detections | |
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) | |
merge = False # use merge-NMS | |
t = time.time() | |
output = [torch.zeros((0,6), device=prediction.device)] * prediction.shape[0] | |
for xi, x in enumerate(prediction): # image index, image inference | |
# Apply constraints | |
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height | |
x = x[xc[xi]] # confidence | |
# Cat apriori labels if autolabelling | |
if labels and len(labels[xi]): | |
l = labels[xi] | |
v = torch.zeros((len(l), nc + 5), device=x.device) | |
v[:, :4] = l[:, 1:5] # box | |
v[:, 4] = 1.0 # conf | |
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls | |
x = torch.cat((x, v), 0) | |
# If none remain process next image | |
if not x.shape[0]: | |
continue | |
# Compute conf | |
x[:, 5:5+nc] *= x[:, 4:5] # conf = obj_conf * cls_conf | |
# Box (center x, center y, width, height) to (x1, y1, x2, y2) | |
box = xywh2xyxy(x[:, :4]) | |
# Detections matrix nx6 (xyxy, conf, cls) | |
if multi_label: | |
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T | |
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) | |
else: # best class only | |
if not kpt_label: | |
conf, j = x[:, 5:].max(1, keepdim=True) | |
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] | |
else: | |
kpts = x[:, 6:] | |
conf, j = x[:, 5:6].max(1, keepdim=True) | |
x = torch.cat((box, conf, j.float(), kpts), 1)[conf.view(-1) > conf_thres] | |
# Filter by class | |
if classes is not None: | |
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] | |
# Apply finite constraint | |
# if not torch.isfinite(x).all(): | |
# x = x[torch.isfinite(x).all(1)] | |
# Check shape | |
n = x.shape[0] # number of boxes | |
if not n: # no boxes | |
continue | |
elif n > max_nms: # excess boxes | |
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence | |
# Batched NMS | |
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes | |
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores | |
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS | |
if i.shape[0] > max_det: # limit detections | |
i = i[:max_det] | |
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) | |
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) | |
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix | |
weights = iou * scores[None] # box weights | |
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes | |
if redundant: | |
i = i[iou.sum(1) > 1] # require redundancy | |
output[xi] = x[i] | |
if (time.time() - t) > time_limit: | |
print(f'WARNING: NMS time limit {time_limit}s exceeded') | |
break # time limit exceeded | |
return output | |
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer() | |
# Strip optimizer from 'f' to finalize training, optionally save as 's' | |
x = torch.load(f, map_location=torch.device('cpu')) | |
if x.get('ema'): | |
x['model'] = x['ema'] # replace model with ema | |
for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys | |
x[k] = None | |
x['epoch'] = -1 | |
x['model'].half() # to FP16 | |
for p in x['model'].parameters(): | |
p.requires_grad = False | |
torch.save(x, s or f) | |
mb = os.path.getsize(s or f) / 1E6 # filesize | |
print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB") | |
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''): | |
# Print mutation results to evolve.txt (for use with train.py --evolve) | |
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys | |
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values | |
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) | |
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) | |
if bucket: | |
url = 'gs://%s/evolve.txt' % bucket | |
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0): | |
os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local | |
with open('evolve.txt', 'a') as f: # append result | |
f.write(c + b + '\n') | |
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows | |
x = x[np.argsort(-fitness(x))] # sort | |
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness | |
# Save yaml | |
for i, k in enumerate(hyp.keys()): | |
hyp[k] = float(x[0, i + 7]) | |
with open(yaml_file, 'w') as f: | |
results = tuple(x[0, :7]) | |
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) | |
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n') | |
yaml.dump(hyp, f, sort_keys=False) | |
if bucket: | |
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload | |
def apply_classifier(x, model, img, im0): | |
# applies a second stage classifier to yolo outputs | |
im0 = [im0] if isinstance(im0, np.ndarray) else im0 | |
for i, d in enumerate(x): # per image | |
if d is not None and len(d): | |
d = d.clone() | |
# Reshape and pad cutouts | |
b = xyxy2xywh(d[:, :4]) # boxes | |
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square | |
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad | |
d[:, :4] = xywh2xyxy(b).long() | |
# Rescale boxes from img_size to im0 size | |
scale_coords(img.shape[2:], d[:, :4], im0[i].shape) | |
# Classes | |
pred_cls1 = d[:, 5].long() | |
ims = [] | |
for j, a in enumerate(d): # per item | |
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] | |
im = cv2.resize(cutout, (224, 224)) # BGR | |
# cv2.imwrite('test%i.jpg' % j, cutout) | |
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 | |
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 | |
im /= 255.0 # 0 - 255 to 0.0 - 1.0 | |
ims.append(im) | |
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction | |
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections | |
return x | |
def increment_path(path, exist_ok=True, sep=''): | |
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc. | |
path = Path(path) # os-agnostic | |
if (path.exists() and exist_ok) or (not path.exists()): | |
return str(path) | |
else: | |
dirs = glob.glob(f"{path}{sep}*") # similar paths | |
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs] | |
i = [int(m.groups()[0]) for m in matches if m] # indices | |
n = max(i) + 1 if i else 2 # increment number | |
return f"{path}{sep}{n}" # update path | |