PaperEdgeDemo / utils /handlers.py
SWHL's picture
First commit
1828176
import visdom
import numpy as np
import csv
import torch
from datetime import datetime
import os
import cv2
import random
import matplotlib.pyplot as plt
class VisPlot(object):
def __init__(self, port=10086, env='main'):
self.vis = visdom.Visdom(port=port)
self.env = env
self.vis.close('loss', env=env)
def plot_loss(self, engine, monitor_metrics, win='loss'):
self.vis.line(X=np.array([engine.state.iteration]),
# NOTE because we use RunningAverage to log the loss, we can retrieve these numbers from state.metrics
Y=np.array([[engine.state.metrics[x]
for x in monitor_metrics]]),
env=self.env, win=win, update='append')
def plot_imgs(self, imgs, win='img', imhistory=False):
imgs = np.clip(imgs, 1e-5, 1 - 1e-5)
self.vis.images(imgs, env=self.env, win=win, opts={
'caption': win, 'store_history': imhistory})
def plot_meshes(self, ms, win='ms'):
plt.close()
n = ms.shape[0]
nr = (n - 1) // 8 + 1
fig, axs = plt.subplots(1, 2)
axs = axs.ravel()
# fig.clf()
c = np.arange(256) / 255.0
c = c.reshape((16, 16))
for ii in range(2):
t = ms[ii]
axs[ii].pcolormesh(t[..., 0], t[..., 1], c,
cmap='YlGnBu', edgecolors='black')
axs[ii].set_xlim(-1, 1)
axs[ii].set_ylim(-1, 1)
axs[ii].invert_yaxis()
# axs[ii].axis('equal', 'box')
axs[ii].set_aspect('equal', 'box')
# fig, axs = plt.subplots(1, 2)
# axs = axs.ravel()
# t = ms[0]
# axs[0].pcolormesh(t[..., 0], t[..., 1], np.zeros_like(t[..., 0]), edgecolors='r')
# axs[0].invert_yaxis()
# axs[0].axis('equal', 'box')
fig.tight_layout()
self.vis.matplot(fig, env=self.env, win=win)
class CSVLogger(object):
def __init__(self, filename):
self.filename = filename
def __call__(self, engine, monitor_metrics):
with open(self.filename, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter=',')
date_time = datetime.now().strftime('%m/%d/%Y-%H:%M:%S')
writer.writerow([date_time, engine.state.iteration] +
[engine.state.metrics[x] for x in monitor_metrics])
# class SaveRes(object):
# def __init__(self, resdir='./'):
# self.yp = []
# self.resdir = resdir
# def update(self, engine):
# self.yp.append(engine.state.output[0][1].cpu().numpy())
# def save(self, epoch_id):
# self.yp = np.concatenate(self.yp)
# savemat(os.path.join(self.resdir, 't{}.mat'.format(epoch_id)), \
# {'yp': self.yp})
# self.yp = []
# # self.yp = []
# # self.yg = []