Spaces:
Build error
Build error
import visdom | |
import numpy as np | |
import csv | |
import torch | |
from datetime import datetime | |
import os | |
import cv2 | |
import random | |
import matplotlib.pyplot as plt | |
class VisPlot(object): | |
def __init__(self, port=10086, env='main'): | |
self.vis = visdom.Visdom(port=port) | |
self.env = env | |
self.vis.close('loss', env=env) | |
def plot_loss(self, engine, monitor_metrics, win='loss'): | |
self.vis.line(X=np.array([engine.state.iteration]), | |
# NOTE because we use RunningAverage to log the loss, we can retrieve these numbers from state.metrics | |
Y=np.array([[engine.state.metrics[x] | |
for x in monitor_metrics]]), | |
env=self.env, win=win, update='append') | |
def plot_imgs(self, imgs, win='img', imhistory=False): | |
imgs = np.clip(imgs, 1e-5, 1 - 1e-5) | |
self.vis.images(imgs, env=self.env, win=win, opts={ | |
'caption': win, 'store_history': imhistory}) | |
def plot_meshes(self, ms, win='ms'): | |
plt.close() | |
n = ms.shape[0] | |
nr = (n - 1) // 8 + 1 | |
fig, axs = plt.subplots(1, 2) | |
axs = axs.ravel() | |
# fig.clf() | |
c = np.arange(256) / 255.0 | |
c = c.reshape((16, 16)) | |
for ii in range(2): | |
t = ms[ii] | |
axs[ii].pcolormesh(t[..., 0], t[..., 1], c, | |
cmap='YlGnBu', edgecolors='black') | |
axs[ii].set_xlim(-1, 1) | |
axs[ii].set_ylim(-1, 1) | |
axs[ii].invert_yaxis() | |
# axs[ii].axis('equal', 'box') | |
axs[ii].set_aspect('equal', 'box') | |
# fig, axs = plt.subplots(1, 2) | |
# axs = axs.ravel() | |
# t = ms[0] | |
# axs[0].pcolormesh(t[..., 0], t[..., 1], np.zeros_like(t[..., 0]), edgecolors='r') | |
# axs[0].invert_yaxis() | |
# axs[0].axis('equal', 'box') | |
fig.tight_layout() | |
self.vis.matplot(fig, env=self.env, win=win) | |
class CSVLogger(object): | |
def __init__(self, filename): | |
self.filename = filename | |
def __call__(self, engine, monitor_metrics): | |
with open(self.filename, 'a') as csvfile: | |
writer = csv.writer(csvfile, delimiter=',') | |
date_time = datetime.now().strftime('%m/%d/%Y-%H:%M:%S') | |
writer.writerow([date_time, engine.state.iteration] + | |
[engine.state.metrics[x] for x in monitor_metrics]) | |
# class SaveRes(object): | |
# def __init__(self, resdir='./'): | |
# self.yp = [] | |
# self.resdir = resdir | |
# def update(self, engine): | |
# self.yp.append(engine.state.output[0][1].cpu().numpy()) | |
# def save(self, epoch_id): | |
# self.yp = np.concatenate(self.yp) | |
# savemat(os.path.join(self.resdir, 't{}.mat'.format(epoch_id)), \ | |
# {'yp': self.yp}) | |
# self.yp = [] | |
# # self.yp = [] | |
# # self.yg = [] | |