PaperEdgeDemo / networks /paperedge_cpu.py
SWHL's picture
First commit
1828176
import torch
import torch.nn as nn
import torch.nn.functional as F
# from torch.nn.utils import spectral_norm as SN
# from torchvision.models.densenet import _DenseBlock
from .tps_warp import TpsWarp, PspWarp
from functools import partial
# import plotly.graph_objects as go
import random
import numpy as np
import cv2
torch.autograd.set_detect_anomaly(True)
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError(
'BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError(
"Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.actv = nn.ReLU()
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.actv(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.actv(out)
return out
def _make_layer(block, inplanes, planes, blocks, stride=1, dilate=False):
norm_layer = nn.BatchNorm2d
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(inplanes, planes * block.expansion,
1, stride, bias=False),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(inplanes, planes, stride,
downsample, norm_layer=norm_layer))
for _ in range(1, blocks):
layers.append(block(planes, planes,
norm_layer=norm_layer))
return nn.Sequential(*layers)
class Interpolate(nn.Module):
def __init__(self, size, mode):
super(Interpolate, self).__init__()
self.interp = nn.functional.interpolate
self.size = size
self.mode = mode
def forward(self, x):
x = self.interp(x, size=self.size, mode=self.mode, align_corners=True)
return x
class GlobalWarper(nn.Module):
def __init__(self):
super(GlobalWarper, self).__init__()
modules = [
nn.Conv2d(5, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU()
]
# encoder
planes = [64, 128, 256, 256, 512, 512]
strides = [2, 2, 2, 2, 2]
blocks = [1, 1, 1, 1, 1]
for k in range(len(planes) - 1):
modules.append(_make_layer(
BasicBlock, planes[k], planes[k + 1], blocks[k], strides[k]))
self.encoder = nn.Sequential(*modules)
# decoder
modules = []
planes = [512, 512, 256, 128, 64]
strides = [2, 2, 2, 2]
# tsizes = [3, 5, 9, 17, 33]
blocks = [1, 1, 1, 1]
for k in range(len(planes) - 1):
modules += [nn.Sequential(nn.Upsample(scale_factor=strides[k],
mode='bilinear',
align_corners=True),
_make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], 1))]
self.decoder = nn.Sequential(*modules)
self.to_warp = nn.Sequential(nn.Conv2d(64, 2, 1))
self.to_warp[0].weight.data.fill_(0.0)
self.to_warp[0].bias.data.fill_(0.0)
iy, ix = torch.meshgrid(torch.linspace(-1, 1, 256), torch.linspace(-1, 1, 256))
self.coord = torch.stack((ix, iy), dim=0).unsqueeze(0)
iy, ix = torch.meshgrid(torch.linspace(-1, 1, 64),
torch.linspace(-1, 1, 64))
# note we mulitply a 0.9 so the network is initialized closer to GT.
# This is different from localwarper net
self.basegrid = torch.stack((ix * 0.9, iy * 0.9), dim=0).unsqueeze(0)
# # box filter
# ksize = 7
# p = int((ksize - 1) / 2)
# self.pad_replct = partial(F.pad, pad=(p, p, p, p), mode='replicate')
# bw = torch.ones(1, 1, ksize, ksize, device='cuda') / ksize / ksize
# self.box_filter = partial(F.conv2d, weight=bw)
def forward(self, im):
# print(self.to_warp[0].weight.data)
# coordconv
B = im.size(0)
c = self.coord.expand(B, -1, -1, -1).detach()
t = torch.cat((im, c), dim=1)
t = self.encoder(t)
t = self.decoder(t)
t = self.to_warp(t)
gs = t + self.basegrid
return gs
class LocalWarper(nn.Module):
def __init__(self):
super().__init__()
modules = [
nn.Conv2d(5, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU()
]
# encoder
planes = [64, 128, 256, 256, 512, 512]
strides = [2, 2, 2, 2, 2]
blocks = [1, 1, 1, 1, 1]
for k in range(len(planes) - 1):
modules.append(_make_layer(
BasicBlock, planes[k], planes[k + 1], blocks[k], strides[k]))
self.encoder = nn.Sequential(*modules)
# decoder
modules = []
planes = [512, 512, 256, 128, 64]
strides = [2, 2, 2, 2]
# tsizes = [3, 5, 9, 17, 33]
blocks = [1, 1, 1, 1]
for k in range(len(planes) - 1):
modules += [nn.Sequential(nn.Upsample(scale_factor=strides[k], mode='bilinear', align_corners=True),
_make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], 1))]
self.decoder = nn.Sequential(*modules)
self.to_warp = nn.Sequential(nn.Conv2d(64, 2, 1))
self.to_warp[0].weight.data.fill_(0.0)
self.to_warp[0].bias.data.fill_(0.0)
iy, ix = torch.meshgrid(
torch.linspace(-1, 1, 256), torch.linspace(-1, 1, 256))
self.coord = torch.stack((ix, iy), dim=0).unsqueeze(0)
iy, ix = torch.meshgrid(torch.linspace(-1, 1, 64),
torch.linspace(-1, 1, 64))
self.basegrid = torch.stack((ix, iy), dim=0).unsqueeze(0)
# box filter
ksize = 5
p = int((ksize - 1) / 2)
self.pad_replct = partial(F.pad, pad=(p, p, p, p), mode='replicate')
bw = torch.ones(1, 1, ksize, ksize) / ksize / ksize
self.box_filter = partial(F.conv2d, weight=bw)
def forward(self, im):
c = self.coord.expand(im.size(0), -1, -1, -1).detach()
t = torch.cat((im, c), dim=1)
# encoder
t = self.encoder(t)
t = self.decoder(t)
t = self.to_warp(t)
# # filter
# t = self.pad_replct(t)
# tx = self.box_filter(t[:, 0 : 1, ...])
# ty = self.box_filter(t[:, 1 : 2, ...])
# t = torch.cat((tx, ty), dim=1)
# bd condition
t[..., 1, 0, :] = 0
t[..., 1, -1, :] = 0
t[..., 0, :, 0] = 0
t[..., 0, :, -1] = 0
gs = t + self.basegrid
return gs
def gs_to_bd(gs):
# gs: B 2 H W
t = torch.cat([gs[..., 0, :], gs[..., -1, :], gs[..., 1: -1,
0], gs[..., 1: -1, -1]], dim=2).permute(0, 2, 1)
# t: B 2(W + H - 1) 2
return t
class MaskLoss(nn.Module):
def __init__(self, gsize):
super().__init__()
self.tpswarper = TpsWarp(gsize)
self.pspwarper = PspWarp()
# self.imsize = imsize
self.msk = torch.ones(1, 1, gsize, gsize)
self.cn = torch.tensor([[-1, -1], [1, -1], [1, 1], [-1, 1]],
dtype=torch.float).unsqueeze(0)
def forward(self, gs, y, s):
# resize gs to s*s
B, _, s0, _ = gs.size()
tgs = F.interpolate(gs, s, mode='bilinear', align_corners=True)
# use only the boundary points
srcpts = gs_to_bd(tgs)
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s),
torch.linspace(-1, 1, s))
t = torch.stack((ix, iy), dim=0).unsqueeze(0).expand_as(tgs)
dstpts = gs_to_bd(t)
tgs_f = self.tpswarper(srcpts, dstpts.detach())
ym = self.msk.expand_as(y)
yh = F.grid_sample(ym, tgs_f.permute(0, 2, 3, 1), align_corners=True)
loss_f = F.l1_loss(yh, y)
# forward/backward consistency loss
tgs_b = self.tpswarper(dstpts.detach(), srcpts)
# tgs_b = F.interpolate(tgs, s0, mode='bilinear', align_corners=True)
yy = F.grid_sample(y, tgs_b.permute(0, 2, 3, 1), align_corners=True)
loss_b = F.l1_loss(yy, ym)
return loss_f + loss_b, tgs_f
def _dist(self, x):
# adjacent point distance
# B, 2, n
x = torch.cat([x[..., 0: 1].detach(), x[..., 1: -1],
x[..., -1:].detach()], dim=2)
d = x[..., 1:] - x[..., :-1]
return torch.norm(d, dim=1)
# class TVLoss(nn.Module):
# def __init__(self):
# super(TVLoss, self).__init__()
# def forward(self, gs):
# loss = self._dist(gs[..., 1:], gs[..., :-1]) + self._dist(gs[..., 1:, :], gs[..., :-1, :])
# return loss
# def _dist(self, x1, x0):
# d = torch.norm(x1 - x0, dim=1, keepdim=True)
# d = torch.abs(d - torch.mean(d, dim=(2, 3), keepdim=True)).mean()
# return d
class WarperUtil(nn.Module):
def __init__(self, imsize):
super().__init__()
self.tpswarper = TpsWarp(imsize)
self.pspwarper = PspWarp()
self.s = imsize
def global_post_warp(self, gs, s):
# B, _, s0, _ = gs.size()
gs = F.interpolate(gs, s, mode='bilinear', align_corners=True)
# gs = F.interpolate(gs, s0, mode='bilinear', align_corners=True)
# extract info
m1 = gs[..., 0, :]
m2 = gs[..., -1, :]
n1 = gs[..., 0]
n2 = gs[..., -1]
# for x
m1x_interval_ratio = m1[:, 0, 1:] - m1[:, 0, :-1]
m1x_interval_ratio /= m1x_interval_ratio.sum(dim=1, keepdim=True)
m2x_interval_ratio = m2[:, 0, 1:] - m2[:, 0, :-1]
m2x_interval_ratio /= m2x_interval_ratio.sum(dim=1, keepdim=True)
# interpolate all x ratio
t = torch.stack(
[m1x_interval_ratio, m2x_interval_ratio], dim=1).unsqueeze(1)
mx_interval_ratio = F.interpolate(
t, (s, m1x_interval_ratio.size(1)), mode='bilinear', align_corners=True)
mx_interval = (n2[..., 0: 1, :] - n1[..., 0: 1, :]
).unsqueeze(3) * mx_interval_ratio
# cumsum to x
dx = torch.cumsum(mx_interval, dim=3) + n1[..., 0: 1, :].unsqueeze(3)
dx = dx[..., 1: -1, :-1]
# for y
n1y_interval_ratio = n1[:, 1, 1:] - n1[:, 1, :-1]
n1y_interval_ratio /= n1y_interval_ratio.sum(dim=1, keepdim=True)
n2y_interval_ratio = n2[:, 1, 1:] - n2[:, 1, :-1]
n2y_interval_ratio /= n2y_interval_ratio.sum(dim=1, keepdim=True)
# interpolate all x ratio
t = torch.stack(
[n1y_interval_ratio, n2y_interval_ratio], dim=2).unsqueeze(1)
ny_interval_ratio = F.interpolate(
t, (n1y_interval_ratio.size(1), s), mode='bilinear', align_corners=True)
ny_interval = (m2[..., 1: 2, :] - m1[..., 1: 2, :]
).unsqueeze(2) * ny_interval_ratio
# cumsum to y
dy = torch.cumsum(ny_interval, dim=2) + m1[..., 1: 2, :].unsqueeze(2)
dy = dy[..., :-1, 1: -1]
ds = torch.cat((dx, dy), dim=1)
gs[..., 1: -1, 1: -1] = ds
return gs
def perturb_warp(self, dd):
B = dd.size(0)
s = self.s
# -0.2 to 0.2
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s),
torch.linspace(-1, 1, s))
t = torch.stack((ix, iy), dim=0).unsqueeze(
0).expand(B, -1, -1, -1)
tt = t.clone()
nd = random.randint(0, 4)
for ii in range(nd):
# define deformation on bd
pm = (torch.rand(B, 1) - 0.5) * 0.2
ps = (torch.rand(B, 1) - 0.5) * 1.95
pt = ps + pm
pt = pt.clamp(-0.975, 0.975)
# put it on one bd
# [1, 1] or [-1, 1] or [-1, -1] etc
a1 = (torch.rand(B, 2) > 0.5).float() * 2 - 1
# select one col for every row
a2 = torch.rand(B, 1) > 0.5
a2 = torch.cat([a2, a2.bitwise_not()], dim=1)
a3 = a1.clone()
a3[a2] = ps.view(-1)
ps = a3.clone()
a3[a2] = pt.view(-1)
pt = a3.clone()
# 2 N 4
bds = torch.stack([
t[0, :, 1: -1, 0], t[0, :, 1: -1, -1], t[0,
:, 0, 1: -1], t[0, :, -1, 1: -1]
], dim=2)
pbd = a2.bitwise_not().float() * a1
# id of boundary p is on
pbd = torch.abs(0.5 * pbd[:, 0] + 2.5 * pbd[:, 1] + 0.5).long()
# ids of other boundaries
pbd = torch.stack([pbd + 1, pbd + 2, pbd + 3], dim=1) % 4
# print(pbd)
pbd = bds[..., pbd].permute(2, 0, 1, 3).reshape(B, 2, -1)
srcpts = torch.stack([
t[..., 0, 0], t[..., 0, -1], t[..., -1, 0], t[..., -1, -1],
ps
], dim=2)
srcpts = torch.cat([pbd, srcpts], dim=2).permute(0, 2, 1)
dstpts = torch.stack([
t[..., 0, 0], t[..., 0, -1], t[..., -1, 0], t[..., -1, -1],
pt
], dim=2)
dstpts = torch.cat([pbd, dstpts], dim=2).permute(0, 2, 1)
# print(srcpts)
# print(dstpts)
tgs = self.tpswarper(srcpts, dstpts)
tt = F.grid_sample(tt, tgs.permute(0, 2, 3, 1), align_corners=True)
nd = random.randint(1, 5)
for ii in range(nd):
pm = (torch.rand(B, 2) - 0.5) * 0.2
ps = (torch.rand(B, 2) - 0.5) * 1.95
pt = ps + pm
pt = pt.clamp(-0.975, 0.975)
srcpts = torch.cat([
t[..., -1, :], t[..., 0, :], t[..., 1: -1, 0], t[..., 1: -1, -1],
ps.unsqueeze(2)
], dim=2).permute(0, 2, 1)
dstpts = torch.cat([
t[..., -1, :], t[..., 0, :], t[..., 1: -1, 0], t[..., 1: -1, -1],
pt.unsqueeze(2)
], dim=2).permute(0, 2, 1)
tgs = self.tpswarper(srcpts, dstpts)
tt = F.grid_sample(tt, tgs.permute(0, 2, 3, 1), align_corners=True)
tgs = tt
# sample tgs to gen invtgs
num_sample = 512
# n = (H-2)*(W-2)
n = s * s
idx = torch.randperm(n)
idx = idx[:num_sample]
srcpts = tgs.reshape(-1, 2, n)[..., idx].permute(0, 2, 1)
dstpts = t.reshape(-1, 2, n)[..., idx].permute(0, 2, 1)
invtgs = self.tpswarper(srcpts, dstpts)
return tgs, invtgs
def equal_spacing_interpolate(self, gs, s):
def equal_bd(x, s):
# x is B 2 n
v0 = x[..., :-1] # B 2 n-1
v = x[..., 1:] - x[..., :-1]
vn = v.norm(dim=1, keepdim=True)
v = v / vn
c = vn.sum(dim=2, keepdim=True) # B 1 1
a = vn / c
b = torch.cumsum(a, dim=2)
b = torch.cat((torch.zeros(B, 1, 1), b[..., :-1]), dim=2)
t = torch.linspace(1e-5, 1 - 1e-5, s).view(1, s, 1)
t = t - b # B s n-1
# print(t)
tt = torch.cat((t, -torch.ones(B, s, 1)), dim=2) # B s n
tt = tt[..., 1:] * tt[..., :-1] # B s n-1
tt = (tt < 0).float()
d = torch.matmul(v0, tt.permute(0, 2, 1)) + \
torch.matmul(v, (tt * t).permute(0, 2, 1)) # B 2 s
return d
gs = F.interpolate(gs, s, mode='bilinear', align_corners=True)
B = gs.size(0)
dst_cn = torch.tensor([[-1, -1], [1, -1], [1, 1], [-1, 1]],
dtype=torch.float).expand(B, -1, -1)
src_cn = torch.stack([gs[..., 0, 0], gs[..., 0, -1],
gs[..., -1, -1], gs[..., -1, 0]], dim=2).permute(0, 2, 1)
M = self.pspwarper.pspmat(src_cn, dst_cn).detach()
invM = self.pspwarper.pspmat(dst_cn, src_cn).detach()
pgs = self.pspwarper(gs.permute(0, 2, 3, 1).reshape(
B, -1, 2), M).reshape(B, s, s, 2).permute(0, 3, 1, 2)
t = [pgs[..., 0, :], pgs[..., -1, :], pgs[..., :, 0], pgs[..., :, -1]]
d = []
for x in t:
d.append(equal_bd(x, s))
pgs[..., 0, :] = d[0]
pgs[..., -1, :] = d[1]
pgs[..., :, 0] = d[2]
pgs[..., :, -1] = d[3]
gs = self.pspwarper(pgs.permute(0, 2, 3, 1).reshape(
B, -1, 2), invM).reshape(B, s, s, 2).permute(0, 3, 1, 2)
gs = self.global_post_warp(gs, s)
return gs
class LocalLoss(nn.Module):
def __init__(self):
super().__init__()
def identity_loss(self, gs):
s = gs.size(2)
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s),
torch.linspace(-1, 1, s))
t = torch.stack((ix, iy), dim=0).unsqueeze(0).expand_as(gs)
loss = F.l1_loss(gs, t.detach())
return loss
def direct_loss(self, gs, invtgs):
loss = F.l1_loss(gs, invtgs.detach())
return loss
def warp_diff_loss(self, xd, xpd, tgs, invtgs):
loss_f = F.l1_loss(xd, F.grid_sample(
tgs, xpd.permute(0, 2, 3, 1), align_corners=True).detach())
loss_b = F.l1_loss(xpd, F.grid_sample(
invtgs, xd.permute(0, 2, 3, 1), align_corners=True).detach())
loss = loss_f + loss_b
return loss
class SupervisedLoss(nn.Module):
def __init__(self):
super().__init__()
s = 64
self.tpswarper = TpsWarp(s)
def fm2bm(self, fm):
# B 3 N N
# fm in [0, 1]
B, _, s, _ = fm.size()
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s),
torch.linspace(-1, 1, s))
t = torch.stack((ix, iy), dim=0).unsqueeze(
0).expand(B, -1, -1, -1)
srcpts = []
dstpts = []
for ii in range(B):
# mask
m = fm[ii, 2]
# z s
z = torch.nonzero(m, as_tuple=False)
num_sample = 512
n = z.size(0)
# print(n)
idx = torch.randperm(n)
idx = idx[:num_sample]
dstpts.append(t[ii, :, z[idx, 0], z[idx, 1]])
srcpts.append(fm[ii, : 2, z[idx, 0], z[idx, 1]] * 2 - 1)
srcpts = torch.stack(srcpts, dim=0).permute(0, 2, 1)
dstpts = torch.stack(dstpts, dim=0).permute(0, 2, 1)
# z = torch.nonzero(torch.abs(srcpts - 0) < 1e-5, as_tuple=False)
# print(z.size(0))
# print(dstpts.min())
# print(dstpts.max())
bm = self.tpswarper(srcpts, dstpts)
# bm[bm > 1] = 1
# bm[bm < -1] = -1
return bm
def gloss(self, x, y):
xbd = gs_to_bd(x)
# y = self.fm2bm(y)
y = F.interpolate(y, 64, mode='bilinear', align_corners=True)
ybd = gs_to_bd(y).detach()
loss = F.l1_loss(xbd, ybd.detach())
return loss
def lloss(self, x, y, dg):
# sample tgs to gen invtgs
B, _, s, _ = dg.size()
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s),
torch.linspace(-1, 1, s))
t = torch.stack((ix, iy), dim=0).unsqueeze(
0).expand(B, -1, -1, -1)
num_sample = 512
# n = (H-2)*(W-2)
n = s * s
idx = torch.randperm(n)
idx = idx[:num_sample]
# srcpts = gs_to_bd(tgs)
# srcpts = torch.cat([srcpts, tgs[..., 1 : -1, 1 : -1].reshape(-1, 2, n)[..., idx].permute(0, 2, 1)], dim=1)
srcpts = dg.reshape(-1, 2, n)[..., idx].permute(0, 2, 1)
# dstpts = gs_to_bd(t)
# dstpts = torch.cat([dstpts, t[..., 1 : -1, 1 : -1].reshape(-1, 2, n)[..., idx].permute(0, 2, 1)], dim=1)
dstpts = t.reshape(-1, 2, n)[..., idx].permute(0, 2, 1)
invdg = self.tpswarper(srcpts, dstpts)
# compute dl = \phi(dg^-1, y)
dl = F.grid_sample(invdg, y.permute(0, 2, 3, 1), align_corners=True)
dl = F.interpolate(dl, 64, mode='bilinear', align_corners=True)
loss = F.l1_loss(x, dl.detach())
# y = F.interpolate(y, 64, mode='bilinear', align_corners=True)
# loss = F.l1_loss(F.grid_sample(dg.detach(), x.permute(0, 2, 3, 1), align_corners=True), y)
return loss, dl.detach()