Spaces:
Build error
Build error
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| # from torch.nn.utils import spectral_norm as SN | |
| # from torchvision.models.densenet import _DenseBlock | |
| from .tps_warp import TpsWarp, PspWarp | |
| from functools import partial | |
| # import plotly.graph_objects as go | |
| import random | |
| import numpy as np | |
| import cv2 | |
| torch.autograd.set_detect_anomaly(True) | |
| # torch.manual_seed(0) | |
| def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): | |
| """3x3 convolution with padding""" | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
| padding=dilation, groups=groups, bias=False, dilation=dilation) | |
| def conv1x1(in_planes, out_planes, stride=1): | |
| """1x1 convolution""" | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
| class BasicBlock(nn.Module): | |
| expansion = 1 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, | |
| base_width=64, dilation=1, norm_layer=None): | |
| super(BasicBlock, self).__init__() | |
| if norm_layer is None: | |
| norm_layer = nn.BatchNorm2d | |
| if groups != 1 or base_width != 64: | |
| raise ValueError('BasicBlock only supports groups=1 and base_width=64') | |
| if dilation > 1: | |
| raise NotImplementedError("Dilation > 1 not supported in BasicBlock") | |
| # Both self.conv1 and self.downsample layers downsample the input when stride != 1 | |
| self.conv1 = conv3x3(inplanes, planes, stride) | |
| self.bn1 = norm_layer(planes) | |
| self.actv = nn.ReLU() | |
| self.conv2 = conv3x3(planes, planes) | |
| self.bn2 = norm_layer(planes) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| identity = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.actv(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| if self.downsample is not None: | |
| identity = self.downsample(x) | |
| out += identity | |
| out = self.actv(out) | |
| return out | |
| def _make_layer(block, inplanes, planes, blocks, stride=1, dilate=False): | |
| norm_layer = nn.BatchNorm2d | |
| downsample = None | |
| if stride != 1 or inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d(inplanes, planes * block.expansion, 1, stride, bias=False), | |
| norm_layer(planes * block.expansion), | |
| ) | |
| layers = [] | |
| layers.append(block(inplanes, planes, stride, downsample, norm_layer=norm_layer)) | |
| for _ in range(1, blocks): | |
| layers.append(block(planes, planes, | |
| norm_layer=norm_layer)) | |
| return nn.Sequential(*layers) | |
| class Interpolate(nn.Module): | |
| def __init__(self, size, mode): | |
| super(Interpolate, self).__init__() | |
| self.interp = nn.functional.interpolate | |
| self.size = size | |
| self.mode = mode | |
| def forward(self, x): | |
| x = self.interp(x, size=self.size, mode=self.mode, align_corners=True) | |
| return x | |
| class GlobalWarper(nn.Module): | |
| def __init__(self): | |
| super(GlobalWarper, self).__init__() | |
| modules = [ | |
| nn.Conv2d(5, 64, kernel_size=7, stride=2, padding=3, bias=False), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU() | |
| ] | |
| # encoder | |
| planes = [64, 128, 256, 256, 512, 512] | |
| strides = [2, 2, 2, 2, 2] | |
| blocks = [1, 1, 1, 1, 1] | |
| for k in range(len(planes) - 1): | |
| modules.append(_make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], strides[k])) | |
| self.encoder = nn.Sequential(*modules) | |
| # decoder | |
| modules = [] | |
| planes = [512, 512, 256, 128, 64] | |
| strides = [2, 2, 2, 2] | |
| # tsizes = [3, 5, 9, 17, 33] | |
| blocks = [1, 1, 1, 1] | |
| for k in range(len(planes) - 1): | |
| # modules += [nn.Sequential(Interpolate(size=tsizes[k], mode='bilinear'), | |
| # _make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], 1))] | |
| modules += [nn.Sequential(nn.Upsample(scale_factor=strides[k], mode='bilinear', align_corners=True), | |
| _make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], 1))] | |
| # self.decoder = nn.ModuleList(modules) | |
| self.decoder = nn.Sequential(*modules) | |
| self.to_warp = nn.Sequential(nn.Conv2d(64, 2, 1)) | |
| self.to_warp[0].weight.data.fill_(0.0) | |
| self.to_warp[0].bias.data.fill_(0.0) | |
| iy, ix = torch.meshgrid(torch.linspace(-1, 1, 256), torch.linspace(-1, 1, 256)) | |
| self.coord = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda') | |
| iy, ix = torch.meshgrid(torch.linspace(-1, 1, 64), torch.linspace(-1, 1, 64)) | |
| ### note we mulitply a 0.9 so the network is initialized closer to GT. This is different from localwarper net | |
| self.basegrid = torch.stack((ix * 0.9, iy * 0.9), dim=0).unsqueeze(0).to('cuda') | |
| # # box filter | |
| # ksize = 7 | |
| # p = int((ksize - 1) / 2) | |
| # self.pad_replct = partial(F.pad, pad=(p, p, p, p), mode='replicate') | |
| # bw = torch.ones(1, 1, ksize, ksize, device='cuda') / ksize / ksize | |
| # self.box_filter = partial(F.conv2d, weight=bw) | |
| def forward(self, im): | |
| # print(self.to_warp[0].weight.data) | |
| # coordconv | |
| B = im.size(0) | |
| c = self.coord.expand(B, -1, -1, -1).detach() | |
| t = torch.cat((im, c), dim=1) | |
| t = self.encoder(t) | |
| t = self.decoder(t) | |
| t = self.to_warp(t) | |
| gs = t + self.basegrid | |
| return gs | |
| class LocalWarper(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| modules = [ | |
| nn.Conv2d(5, 64, kernel_size=7, stride=2, padding=3, bias=False), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU() | |
| ] | |
| # encoder | |
| planes = [64, 128, 256, 256, 512, 512] | |
| strides = [2, 2, 2, 2, 2] | |
| blocks = [1, 1, 1, 1, 1] | |
| for k in range(len(planes) - 1): | |
| modules.append(_make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], strides[k])) | |
| self.encoder = nn.Sequential(*modules) | |
| # decoder | |
| modules = [] | |
| planes = [512, 512, 256, 128, 64] | |
| strides = [2, 2, 2, 2] | |
| # tsizes = [3, 5, 9, 17, 33] | |
| blocks = [1, 1, 1, 1] | |
| for k in range(len(planes) - 1): | |
| modules += [nn.Sequential(nn.Upsample(scale_factor=strides[k], mode='bilinear', align_corners=True), | |
| _make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], 1))] | |
| self.decoder = nn.Sequential(*modules) | |
| self.to_warp = nn.Sequential(nn.Conv2d(64, 2, 1)) | |
| self.to_warp[0].weight.data.fill_(0.0) | |
| self.to_warp[0].bias.data.fill_(0.0) | |
| iy, ix = torch.meshgrid(torch.linspace(-1, 1, 256), torch.linspace(-1, 1, 256)) | |
| self.coord = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda') | |
| iy, ix = torch.meshgrid(torch.linspace(-1, 1, 64), torch.linspace(-1, 1, 64)) | |
| self.basegrid = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda') | |
| # box filter | |
| ksize = 5 | |
| p = int((ksize - 1) / 2) | |
| self.pad_replct = partial(F.pad, pad=(p, p, p, p), mode='replicate') | |
| bw = torch.ones(1, 1, ksize, ksize, device='cuda') / ksize / ksize | |
| self.box_filter = partial(F.conv2d, weight=bw) | |
| def forward(self, im): | |
| c = self.coord.expand(im.size(0), -1, -1, -1).detach() | |
| t = torch.cat((im, c), dim=1) | |
| # encoder | |
| t = self.encoder(t) | |
| t = self.decoder(t) | |
| t = self.to_warp(t) | |
| # # filter | |
| # t = self.pad_replct(t) | |
| # tx = self.box_filter(t[:, 0 : 1, ...]) | |
| # ty = self.box_filter(t[:, 1 : 2, ...]) | |
| # t = torch.cat((tx, ty), dim=1) | |
| # bd condition | |
| t[..., 1, 0, :] = 0 | |
| t[..., 1, -1, :] = 0 | |
| t[..., 0, :, 0] = 0 | |
| t[..., 0, :, -1] = 0 | |
| gs = t + self.basegrid | |
| return gs | |
| def gs_to_bd(gs): | |
| # gs: B 2 H W | |
| t = torch.cat([gs[..., 0, :], gs[..., -1, :], gs[..., 1 : -1, 0], gs[..., 1 : -1, -1]], dim=2).permute(0, 2, 1) | |
| # t: B 2(W + H - 1) 2 | |
| return t | |
| class MaskLoss(nn.Module): | |
| def __init__(self, gsize): | |
| super().__init__() | |
| self.tpswarper = TpsWarp(gsize) | |
| self.pspwarper = PspWarp() | |
| # self.imsize = imsize | |
| self.msk = torch.ones(1, 1, gsize, gsize, device='cuda') | |
| self.cn = torch.tensor([[-1, -1], [1, -1], [1, 1], [-1, 1]], dtype=torch.float, device='cuda').unsqueeze(0) | |
| def forward(self, gs, y, s): | |
| # resize gs to s*s | |
| B, _, s0, _ = gs.size() | |
| tgs = F.interpolate(gs, s, mode='bilinear', align_corners=True) | |
| # use only the boundary points | |
| srcpts = gs_to_bd(tgs) | |
| iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s)) | |
| t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand_as(tgs) | |
| dstpts = gs_to_bd(t) | |
| tgs_f = self.tpswarper(srcpts, dstpts.detach()) | |
| ym = self.msk.expand_as(y) | |
| yh = F.grid_sample(ym, tgs_f.permute(0, 2, 3, 1), align_corners=True) | |
| loss_f = F.l1_loss(yh, y) | |
| # forward/backward consistency loss | |
| tgs_b = self.tpswarper(dstpts.detach(), srcpts) | |
| # tgs_b = F.interpolate(tgs, s0, mode='bilinear', align_corners=True) | |
| yy = F.grid_sample(y, tgs_b.permute(0, 2, 3, 1), align_corners=True) | |
| loss_b = F.l1_loss(yy, ym) | |
| return loss_f + loss_b, tgs_f | |
| def _dist(self, x): | |
| # adjacent point distance | |
| # B, 2, n | |
| x = torch.cat([x[..., 0 : 1].detach(), x[..., 1 : -1], x[..., -1 : ].detach()], dim=2) | |
| d = x[..., 1:] - x[..., :-1] | |
| return torch.norm(d, dim=1) | |
| # class TVLoss(nn.Module): | |
| # def __init__(self): | |
| # super(TVLoss, self).__init__() | |
| # def forward(self, gs): | |
| # loss = self._dist(gs[..., 1:], gs[..., :-1]) + self._dist(gs[..., 1:, :], gs[..., :-1, :]) | |
| # return loss | |
| # def _dist(self, x1, x0): | |
| # d = torch.norm(x1 - x0, dim=1, keepdim=True) | |
| # d = torch.abs(d - torch.mean(d, dim=(2, 3), keepdim=True)).mean() | |
| # return d | |
| class WarperUtil(nn.Module): | |
| def __init__(self, imsize): | |
| super().__init__() | |
| self.tpswarper = TpsWarp(imsize) | |
| self.pspwarper = PspWarp() | |
| self.s = imsize | |
| def global_post_warp(self, gs, s): | |
| # B, _, s0, _ = gs.size() | |
| gs = F.interpolate(gs, s, mode='bilinear', align_corners=True) | |
| # gs = F.interpolate(gs, s0, mode='bilinear', align_corners=True) | |
| # extract info | |
| m1 = gs[..., 0, :] | |
| m2 = gs[..., -1, :] | |
| n1 = gs[..., 0] | |
| n2 = gs[..., -1] | |
| # for x | |
| m1x_interval_ratio = m1[:, 0, 1:] - m1[:, 0, :-1] | |
| m1x_interval_ratio /= m1x_interval_ratio.sum(dim=1, keepdim=True) | |
| m2x_interval_ratio = m2[:, 0, 1:] - m2[:, 0, :-1] | |
| m2x_interval_ratio /= m2x_interval_ratio.sum(dim=1, keepdim=True) | |
| # interpolate all x ratio | |
| t = torch.stack([m1x_interval_ratio, m2x_interval_ratio], dim=1).unsqueeze(1) | |
| mx_interval_ratio = F.interpolate(t, (s, m1x_interval_ratio.size(1)), mode='bilinear', align_corners=True) | |
| mx_interval = (n2[..., 0 : 1, :] - n1[..., 0 : 1, :]).unsqueeze(3) * mx_interval_ratio | |
| # cumsum to x | |
| dx = torch.cumsum(mx_interval, dim=3) + n1[..., 0 : 1, :].unsqueeze(3) | |
| dx = dx[..., 1 : -1, :-1] | |
| # for y | |
| n1y_interval_ratio = n1[:, 1, 1:] - n1[:, 1, :-1] | |
| n1y_interval_ratio /= n1y_interval_ratio.sum(dim=1, keepdim=True) | |
| n2y_interval_ratio = n2[:, 1, 1:] - n2[:, 1, :-1] | |
| n2y_interval_ratio /= n2y_interval_ratio.sum(dim=1, keepdim=True) | |
| # interpolate all x ratio | |
| t = torch.stack([n1y_interval_ratio, n2y_interval_ratio], dim=2).unsqueeze(1) | |
| ny_interval_ratio = F.interpolate(t, (n1y_interval_ratio.size(1), s), mode='bilinear', align_corners=True) | |
| ny_interval = (m2[..., 1 : 2, :] - m1[..., 1 : 2, :]).unsqueeze(2) * ny_interval_ratio | |
| # cumsum to y | |
| dy = torch.cumsum(ny_interval, dim=2) + m1[..., 1 : 2, :].unsqueeze(2) | |
| dy = dy[..., :-1, 1 : -1] | |
| ds = torch.cat((dx, dy), dim=1) | |
| gs[..., 1 : -1, 1 : -1] = ds | |
| return gs | |
| def perturb_warp(self, dd): | |
| B = dd.size(0) | |
| s = self.s | |
| # -0.2 to 0.2 | |
| iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s)) | |
| t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand(B, -1, -1, -1) | |
| tt = t.clone() | |
| nd = random.randint(0, 4) | |
| for ii in range(nd): | |
| # define deformation on bd | |
| pm = (torch.rand(B, 1) - 0.5) * 0.2 | |
| ps = (torch.rand(B, 1) - 0.5) * 1.95 | |
| pt = ps + pm | |
| pt = pt.clamp(-0.975, 0.975) | |
| # put it on one bd | |
| # [1, 1] or [-1, 1] or [-1, -1] etc | |
| a1 = (torch.rand(B, 2) > 0.5).float() * 2 -1 | |
| # select one col for every row | |
| a2 = torch.rand(B, 1) > 0.5 | |
| a2 = torch.cat([a2, a2.bitwise_not()], dim=1) | |
| a3 = a1.clone() | |
| a3[a2] = ps.view(-1) | |
| ps = a3.clone() | |
| a3[a2] = pt.view(-1) | |
| pt = a3.clone() | |
| # 2 N 4 | |
| bds = torch.stack([ | |
| t[0, :, 1 : -1, 0], t[0, :, 1 : -1, -1], t[0, :, 0, 1 : -1], t[0, :, -1, 1 : -1] | |
| ], dim=2) | |
| pbd = a2.bitwise_not().float() * a1 | |
| # id of boundary p is on | |
| pbd = torch.abs(0.5 * pbd[:, 0] + 2.5 * pbd[:, 1] + 0.5).long() | |
| # ids of other boundaries | |
| pbd = torch.stack([pbd + 1, pbd + 2, pbd + 3], dim=1) % 4 | |
| # print(pbd) | |
| pbd = bds[..., pbd].permute(2, 0, 1, 3).reshape(B, 2, -1) | |
| srcpts = torch.stack([ | |
| t[..., 0, 0], t[..., 0, -1], t[..., -1, 0], t[..., -1, -1], | |
| ps.to('cuda') | |
| ], dim=2) | |
| srcpts = torch.cat([pbd, srcpts], dim=2).permute(0, 2, 1) | |
| dstpts = torch.stack([ | |
| t[..., 0, 0], t[..., 0, -1], t[..., -1, 0], t[..., -1, -1], | |
| pt.to('cuda') | |
| ], dim=2) | |
| dstpts = torch.cat([pbd, dstpts], dim=2).permute(0, 2, 1) | |
| # print(srcpts) | |
| # print(dstpts) | |
| tgs = self.tpswarper(srcpts, dstpts) | |
| tt = F.grid_sample(tt, tgs.permute(0, 2, 3, 1), align_corners=True) | |
| nd = random.randint(1, 5) | |
| for ii in range(nd): | |
| pm = (torch.rand(B, 2) - 0.5) * 0.2 | |
| ps = (torch.rand(B, 2) - 0.5) * 1.95 | |
| pt = ps + pm | |
| pt = pt.clamp(-0.975, 0.975) | |
| srcpts = torch.cat([ | |
| t[..., -1, :], t[..., 0, :], t[..., 1 : -1, 0], t[..., 1 : -1, -1], | |
| ps.unsqueeze(2).to('cuda') | |
| ], dim=2).permute(0, 2, 1) | |
| dstpts = torch.cat([ | |
| t[..., -1, :], t[..., 0, :], t[..., 1 : -1, 0], t[..., 1 : -1, -1], | |
| pt.unsqueeze(2).to('cuda') | |
| ], dim=2).permute(0, 2, 1) | |
| tgs = self.tpswarper(srcpts, dstpts) | |
| tt = F.grid_sample(tt, tgs.permute(0, 2, 3, 1), align_corners=True) | |
| tgs = tt | |
| # sample tgs to gen invtgs | |
| num_sample = 512 | |
| # n = (H-2)*(W-2) | |
| n = s * s | |
| idx = torch.randperm(n) | |
| idx = idx[:num_sample] | |
| srcpts = tgs.reshape(-1, 2, n)[..., idx].permute(0, 2, 1) | |
| dstpts = t.reshape(-1, 2, n)[..., idx].permute(0, 2, 1) | |
| invtgs = self.tpswarper(srcpts, dstpts) | |
| return tgs, invtgs | |
| def equal_spacing_interpolate(self, gs, s): | |
| def equal_bd(x, s): | |
| # x is B 2 n | |
| v0 = x[..., :-1] # B 2 n-1 | |
| v = x[..., 1:] - x[..., :-1] | |
| vn = v.norm(dim=1, keepdim=True) | |
| v = v / vn | |
| c = vn.sum(dim=2, keepdim=True) #B 1 1 | |
| a = vn / c | |
| b = torch.cumsum(a, dim=2) | |
| b = torch.cat((torch.zeros(B, 1, 1, device='cuda'), b[..., :-1]), dim=2) | |
| t = torch.linspace(1e-5, 1 - 1e-5, s).view(1, s, 1).to('cuda') | |
| t = t - b # B s n-1 | |
| # print(t) | |
| tt = torch.cat((t, -torch.ones(B, s, 1, device='cuda')), dim=2) # B s n | |
| tt = tt[..., 1:] * tt[..., :-1] # B s n-1 | |
| tt = (tt < 0).float() | |
| d = torch.matmul(v0, tt.permute(0, 2, 1)) + torch.matmul(v, (tt * t).permute(0, 2, 1)) # B 2 s | |
| # print(d) | |
| return d | |
| gs = F.interpolate(gs, s, mode='bilinear', align_corners=True) | |
| B = gs.size(0) | |
| dst_cn = torch.tensor([[-1, -1], [1, -1], [1, 1], [-1, 1]], dtype=torch.float, device='cuda').expand(B, -1, -1) | |
| src_cn = torch.stack([gs[..., 0, 0], gs[..., 0, -1], gs[..., -1, -1], gs[..., -1, 0]], dim=2).permute(0, 2, 1) | |
| M = self.pspwarper.pspmat(src_cn, dst_cn).detach() | |
| invM = self.pspwarper.pspmat(dst_cn, src_cn).detach() | |
| pgs = self.pspwarper(gs.permute(0, 2, 3, 1).reshape(B, -1, 2), M).reshape(B, s, s, 2).permute(0, 3, 1, 2) | |
| t = [pgs[..., 0, :], pgs[..., -1, :], pgs[..., :, 0], pgs[..., :, -1]] | |
| d = [] | |
| for x in t: | |
| d.append(equal_bd(x, s)) | |
| pgs[..., 0, :] = d[0] | |
| pgs[..., -1, :] = d[1] | |
| pgs[..., :, 0] = d[2] | |
| pgs[..., :, -1] = d[3] | |
| gs = self.pspwarper(pgs.permute(0, 2, 3, 1).reshape(B, -1, 2), invM).reshape(B, s, s, 2).permute(0, 3, 1, 2) | |
| gs = self.global_post_warp(gs, s) | |
| return gs | |
| class LocalLoss(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def identity_loss(self, gs): | |
| s = gs.size(2) | |
| iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s)) | |
| t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand_as(gs) | |
| loss = F.l1_loss(gs, t.detach()) | |
| return loss | |
| def direct_loss(self, gs, invtgs): | |
| loss = F.l1_loss(gs, invtgs.detach()) | |
| return loss | |
| def warp_diff_loss(self, xd, xpd, tgs, invtgs): | |
| loss_f = F.l1_loss(xd, F.grid_sample(tgs, xpd.permute(0, 2, 3, 1), align_corners=True).detach()) | |
| loss_b = F.l1_loss(xpd, F.grid_sample(invtgs, xd.permute(0, 2, 3, 1), align_corners=True).detach()) | |
| loss = loss_f + loss_b | |
| return loss | |
| class SupervisedLoss(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| s = 64 | |
| self.tpswarper = TpsWarp(s) | |
| def fm2bm(self, fm): | |
| # B 3 N N | |
| # fm in [0, 1] | |
| B, _, s, _ = fm.size() | |
| iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s)) | |
| t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand(B, -1, -1, -1) | |
| srcpts = [] | |
| dstpts = [] | |
| for ii in range(B): | |
| # mask | |
| m = fm[ii, 2] | |
| # z s | |
| z = torch.nonzero(m, as_tuple=False) | |
| num_sample = 512 | |
| n = z.size(0) | |
| # print(n) | |
| idx = torch.randperm(n) | |
| idx = idx[:num_sample] | |
| dstpts.append(t[ii, :, z[idx, 0], z[idx, 1]]) | |
| srcpts.append(fm[ii, : 2, z[idx, 0], z[idx, 1]] * 2 - 1) | |
| srcpts = torch.stack(srcpts, dim=0).permute(0, 2, 1) | |
| dstpts = torch.stack(dstpts, dim=0).permute(0, 2, 1) | |
| # z = torch.nonzero(torch.abs(srcpts - 0) < 1e-5, as_tuple=False) | |
| # print(z.size(0)) | |
| # print(dstpts.min()) | |
| # print(dstpts.max()) | |
| bm = self.tpswarper(srcpts, dstpts) | |
| # bm[bm > 1] = 1 | |
| # bm[bm < -1] = -1 | |
| return bm | |
| def gloss(self, x, y): | |
| xbd = gs_to_bd(x) | |
| # y = self.fm2bm(y) | |
| y = F.interpolate(y, 64, mode='bilinear', align_corners=True) | |
| ybd = gs_to_bd(y).detach() | |
| loss = F.l1_loss(xbd, ybd.detach()) | |
| return loss | |
| def lloss(self, x, y, dg): | |
| # sample tgs to gen invtgs | |
| B, _, s, _ = dg.size() | |
| iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s)) | |
| t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand(B, -1, -1, -1) | |
| num_sample = 512 | |
| # n = (H-2)*(W-2) | |
| n = s * s | |
| idx = torch.randperm(n) | |
| idx = idx[:num_sample] | |
| # srcpts = gs_to_bd(tgs) | |
| # srcpts = torch.cat([srcpts, tgs[..., 1 : -1, 1 : -1].reshape(-1, 2, n)[..., idx].permute(0, 2, 1)], dim=1) | |
| srcpts = dg.reshape(-1, 2, n)[..., idx].permute(0, 2, 1) | |
| # dstpts = gs_to_bd(t) | |
| # dstpts = torch.cat([dstpts, t[..., 1 : -1, 1 : -1].reshape(-1, 2, n)[..., idx].permute(0, 2, 1)], dim=1) | |
| dstpts = t.reshape(-1, 2, n)[..., idx].permute(0, 2, 1) | |
| invdg = self.tpswarper(srcpts, dstpts) | |
| # compute dl = \phi(dg^-1, y) | |
| dl = F.grid_sample(invdg, y.permute(0, 2, 3, 1), align_corners=True) | |
| dl = F.interpolate(dl, 64, mode='bilinear', align_corners=True) | |
| loss = F.l1_loss(x, dl.detach()) | |
| # y = F.interpolate(y, 64, mode='bilinear', align_corners=True) | |
| # loss = F.l1_loss(F.grid_sample(dg.detach(), x.permute(0, 2, 3, 1), align_corners=True), y) | |
| return loss, dl.detach() | |