Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# from torch.nn.utils import spectral_norm as SN | |
# from torchvision.models.densenet import _DenseBlock | |
from .tps_warp import TpsWarp, PspWarp | |
from functools import partial | |
# import plotly.graph_objects as go | |
import random | |
import numpy as np | |
import cv2 | |
torch.autograd.set_detect_anomaly(True) | |
# torch.manual_seed(0) | |
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=dilation, groups=groups, bias=False, dilation=dilation) | |
def conv1x1(in_planes, out_planes, stride=1): | |
"""1x1 convolution""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, | |
base_width=64, dilation=1, norm_layer=None): | |
super(BasicBlock, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
if groups != 1 or base_width != 64: | |
raise ValueError('BasicBlock only supports groups=1 and base_width=64') | |
if dilation > 1: | |
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") | |
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = norm_layer(planes) | |
self.actv = nn.ReLU() | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = norm_layer(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.actv(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.actv(out) | |
return out | |
def _make_layer(block, inplanes, planes, blocks, stride=1, dilate=False): | |
norm_layer = nn.BatchNorm2d | |
downsample = None | |
if stride != 1 or inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(inplanes, planes * block.expansion, 1, stride, bias=False), | |
norm_layer(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(inplanes, planes, stride, downsample, norm_layer=norm_layer)) | |
for _ in range(1, blocks): | |
layers.append(block(planes, planes, | |
norm_layer=norm_layer)) | |
return nn.Sequential(*layers) | |
class Interpolate(nn.Module): | |
def __init__(self, size, mode): | |
super(Interpolate, self).__init__() | |
self.interp = nn.functional.interpolate | |
self.size = size | |
self.mode = mode | |
def forward(self, x): | |
x = self.interp(x, size=self.size, mode=self.mode, align_corners=True) | |
return x | |
class GlobalWarper(nn.Module): | |
def __init__(self): | |
super(GlobalWarper, self).__init__() | |
modules = [ | |
nn.Conv2d(5, 64, kernel_size=7, stride=2, padding=3, bias=False), | |
nn.BatchNorm2d(64), | |
nn.ReLU() | |
] | |
# encoder | |
planes = [64, 128, 256, 256, 512, 512] | |
strides = [2, 2, 2, 2, 2] | |
blocks = [1, 1, 1, 1, 1] | |
for k in range(len(planes) - 1): | |
modules.append(_make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], strides[k])) | |
self.encoder = nn.Sequential(*modules) | |
# decoder | |
modules = [] | |
planes = [512, 512, 256, 128, 64] | |
strides = [2, 2, 2, 2] | |
# tsizes = [3, 5, 9, 17, 33] | |
blocks = [1, 1, 1, 1] | |
for k in range(len(planes) - 1): | |
# modules += [nn.Sequential(Interpolate(size=tsizes[k], mode='bilinear'), | |
# _make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], 1))] | |
modules += [nn.Sequential(nn.Upsample(scale_factor=strides[k], mode='bilinear', align_corners=True), | |
_make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], 1))] | |
# self.decoder = nn.ModuleList(modules) | |
self.decoder = nn.Sequential(*modules) | |
self.to_warp = nn.Sequential(nn.Conv2d(64, 2, 1)) | |
self.to_warp[0].weight.data.fill_(0.0) | |
self.to_warp[0].bias.data.fill_(0.0) | |
iy, ix = torch.meshgrid(torch.linspace(-1, 1, 256), torch.linspace(-1, 1, 256)) | |
self.coord = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda') | |
iy, ix = torch.meshgrid(torch.linspace(-1, 1, 64), torch.linspace(-1, 1, 64)) | |
### note we mulitply a 0.9 so the network is initialized closer to GT. This is different from localwarper net | |
self.basegrid = torch.stack((ix * 0.9, iy * 0.9), dim=0).unsqueeze(0).to('cuda') | |
# # box filter | |
# ksize = 7 | |
# p = int((ksize - 1) / 2) | |
# self.pad_replct = partial(F.pad, pad=(p, p, p, p), mode='replicate') | |
# bw = torch.ones(1, 1, ksize, ksize, device='cuda') / ksize / ksize | |
# self.box_filter = partial(F.conv2d, weight=bw) | |
def forward(self, im): | |
# print(self.to_warp[0].weight.data) | |
# coordconv | |
B = im.size(0) | |
c = self.coord.expand(B, -1, -1, -1).detach() | |
t = torch.cat((im, c), dim=1) | |
t = self.encoder(t) | |
t = self.decoder(t) | |
t = self.to_warp(t) | |
gs = t + self.basegrid | |
return gs | |
class LocalWarper(nn.Module): | |
def __init__(self): | |
super().__init__() | |
modules = [ | |
nn.Conv2d(5, 64, kernel_size=7, stride=2, padding=3, bias=False), | |
nn.BatchNorm2d(64), | |
nn.ReLU() | |
] | |
# encoder | |
planes = [64, 128, 256, 256, 512, 512] | |
strides = [2, 2, 2, 2, 2] | |
blocks = [1, 1, 1, 1, 1] | |
for k in range(len(planes) - 1): | |
modules.append(_make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], strides[k])) | |
self.encoder = nn.Sequential(*modules) | |
# decoder | |
modules = [] | |
planes = [512, 512, 256, 128, 64] | |
strides = [2, 2, 2, 2] | |
# tsizes = [3, 5, 9, 17, 33] | |
blocks = [1, 1, 1, 1] | |
for k in range(len(planes) - 1): | |
modules += [nn.Sequential(nn.Upsample(scale_factor=strides[k], mode='bilinear', align_corners=True), | |
_make_layer(BasicBlock, planes[k], planes[k + 1], blocks[k], 1))] | |
self.decoder = nn.Sequential(*modules) | |
self.to_warp = nn.Sequential(nn.Conv2d(64, 2, 1)) | |
self.to_warp[0].weight.data.fill_(0.0) | |
self.to_warp[0].bias.data.fill_(0.0) | |
iy, ix = torch.meshgrid(torch.linspace(-1, 1, 256), torch.linspace(-1, 1, 256)) | |
self.coord = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda') | |
iy, ix = torch.meshgrid(torch.linspace(-1, 1, 64), torch.linspace(-1, 1, 64)) | |
self.basegrid = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda') | |
# box filter | |
ksize = 5 | |
p = int((ksize - 1) / 2) | |
self.pad_replct = partial(F.pad, pad=(p, p, p, p), mode='replicate') | |
bw = torch.ones(1, 1, ksize, ksize, device='cuda') / ksize / ksize | |
self.box_filter = partial(F.conv2d, weight=bw) | |
def forward(self, im): | |
c = self.coord.expand(im.size(0), -1, -1, -1).detach() | |
t = torch.cat((im, c), dim=1) | |
# encoder | |
t = self.encoder(t) | |
t = self.decoder(t) | |
t = self.to_warp(t) | |
# # filter | |
# t = self.pad_replct(t) | |
# tx = self.box_filter(t[:, 0 : 1, ...]) | |
# ty = self.box_filter(t[:, 1 : 2, ...]) | |
# t = torch.cat((tx, ty), dim=1) | |
# bd condition | |
t[..., 1, 0, :] = 0 | |
t[..., 1, -1, :] = 0 | |
t[..., 0, :, 0] = 0 | |
t[..., 0, :, -1] = 0 | |
gs = t + self.basegrid | |
return gs | |
def gs_to_bd(gs): | |
# gs: B 2 H W | |
t = torch.cat([gs[..., 0, :], gs[..., -1, :], gs[..., 1 : -1, 0], gs[..., 1 : -1, -1]], dim=2).permute(0, 2, 1) | |
# t: B 2(W + H - 1) 2 | |
return t | |
class MaskLoss(nn.Module): | |
def __init__(self, gsize): | |
super().__init__() | |
self.tpswarper = TpsWarp(gsize) | |
self.pspwarper = PspWarp() | |
# self.imsize = imsize | |
self.msk = torch.ones(1, 1, gsize, gsize, device='cuda') | |
self.cn = torch.tensor([[-1, -1], [1, -1], [1, 1], [-1, 1]], dtype=torch.float, device='cuda').unsqueeze(0) | |
def forward(self, gs, y, s): | |
# resize gs to s*s | |
B, _, s0, _ = gs.size() | |
tgs = F.interpolate(gs, s, mode='bilinear', align_corners=True) | |
# use only the boundary points | |
srcpts = gs_to_bd(tgs) | |
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s)) | |
t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand_as(tgs) | |
dstpts = gs_to_bd(t) | |
tgs_f = self.tpswarper(srcpts, dstpts.detach()) | |
ym = self.msk.expand_as(y) | |
yh = F.grid_sample(ym, tgs_f.permute(0, 2, 3, 1), align_corners=True) | |
loss_f = F.l1_loss(yh, y) | |
# forward/backward consistency loss | |
tgs_b = self.tpswarper(dstpts.detach(), srcpts) | |
# tgs_b = F.interpolate(tgs, s0, mode='bilinear', align_corners=True) | |
yy = F.grid_sample(y, tgs_b.permute(0, 2, 3, 1), align_corners=True) | |
loss_b = F.l1_loss(yy, ym) | |
return loss_f + loss_b, tgs_f | |
def _dist(self, x): | |
# adjacent point distance | |
# B, 2, n | |
x = torch.cat([x[..., 0 : 1].detach(), x[..., 1 : -1], x[..., -1 : ].detach()], dim=2) | |
d = x[..., 1:] - x[..., :-1] | |
return torch.norm(d, dim=1) | |
# class TVLoss(nn.Module): | |
# def __init__(self): | |
# super(TVLoss, self).__init__() | |
# def forward(self, gs): | |
# loss = self._dist(gs[..., 1:], gs[..., :-1]) + self._dist(gs[..., 1:, :], gs[..., :-1, :]) | |
# return loss | |
# def _dist(self, x1, x0): | |
# d = torch.norm(x1 - x0, dim=1, keepdim=True) | |
# d = torch.abs(d - torch.mean(d, dim=(2, 3), keepdim=True)).mean() | |
# return d | |
class WarperUtil(nn.Module): | |
def __init__(self, imsize): | |
super().__init__() | |
self.tpswarper = TpsWarp(imsize) | |
self.pspwarper = PspWarp() | |
self.s = imsize | |
def global_post_warp(self, gs, s): | |
# B, _, s0, _ = gs.size() | |
gs = F.interpolate(gs, s, mode='bilinear', align_corners=True) | |
# gs = F.interpolate(gs, s0, mode='bilinear', align_corners=True) | |
# extract info | |
m1 = gs[..., 0, :] | |
m2 = gs[..., -1, :] | |
n1 = gs[..., 0] | |
n2 = gs[..., -1] | |
# for x | |
m1x_interval_ratio = m1[:, 0, 1:] - m1[:, 0, :-1] | |
m1x_interval_ratio /= m1x_interval_ratio.sum(dim=1, keepdim=True) | |
m2x_interval_ratio = m2[:, 0, 1:] - m2[:, 0, :-1] | |
m2x_interval_ratio /= m2x_interval_ratio.sum(dim=1, keepdim=True) | |
# interpolate all x ratio | |
t = torch.stack([m1x_interval_ratio, m2x_interval_ratio], dim=1).unsqueeze(1) | |
mx_interval_ratio = F.interpolate(t, (s, m1x_interval_ratio.size(1)), mode='bilinear', align_corners=True) | |
mx_interval = (n2[..., 0 : 1, :] - n1[..., 0 : 1, :]).unsqueeze(3) * mx_interval_ratio | |
# cumsum to x | |
dx = torch.cumsum(mx_interval, dim=3) + n1[..., 0 : 1, :].unsqueeze(3) | |
dx = dx[..., 1 : -1, :-1] | |
# for y | |
n1y_interval_ratio = n1[:, 1, 1:] - n1[:, 1, :-1] | |
n1y_interval_ratio /= n1y_interval_ratio.sum(dim=1, keepdim=True) | |
n2y_interval_ratio = n2[:, 1, 1:] - n2[:, 1, :-1] | |
n2y_interval_ratio /= n2y_interval_ratio.sum(dim=1, keepdim=True) | |
# interpolate all x ratio | |
t = torch.stack([n1y_interval_ratio, n2y_interval_ratio], dim=2).unsqueeze(1) | |
ny_interval_ratio = F.interpolate(t, (n1y_interval_ratio.size(1), s), mode='bilinear', align_corners=True) | |
ny_interval = (m2[..., 1 : 2, :] - m1[..., 1 : 2, :]).unsqueeze(2) * ny_interval_ratio | |
# cumsum to y | |
dy = torch.cumsum(ny_interval, dim=2) + m1[..., 1 : 2, :].unsqueeze(2) | |
dy = dy[..., :-1, 1 : -1] | |
ds = torch.cat((dx, dy), dim=1) | |
gs[..., 1 : -1, 1 : -1] = ds | |
return gs | |
def perturb_warp(self, dd): | |
B = dd.size(0) | |
s = self.s | |
# -0.2 to 0.2 | |
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s)) | |
t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand(B, -1, -1, -1) | |
tt = t.clone() | |
nd = random.randint(0, 4) | |
for ii in range(nd): | |
# define deformation on bd | |
pm = (torch.rand(B, 1) - 0.5) * 0.2 | |
ps = (torch.rand(B, 1) - 0.5) * 1.95 | |
pt = ps + pm | |
pt = pt.clamp(-0.975, 0.975) | |
# put it on one bd | |
# [1, 1] or [-1, 1] or [-1, -1] etc | |
a1 = (torch.rand(B, 2) > 0.5).float() * 2 -1 | |
# select one col for every row | |
a2 = torch.rand(B, 1) > 0.5 | |
a2 = torch.cat([a2, a2.bitwise_not()], dim=1) | |
a3 = a1.clone() | |
a3[a2] = ps.view(-1) | |
ps = a3.clone() | |
a3[a2] = pt.view(-1) | |
pt = a3.clone() | |
# 2 N 4 | |
bds = torch.stack([ | |
t[0, :, 1 : -1, 0], t[0, :, 1 : -1, -1], t[0, :, 0, 1 : -1], t[0, :, -1, 1 : -1] | |
], dim=2) | |
pbd = a2.bitwise_not().float() * a1 | |
# id of boundary p is on | |
pbd = torch.abs(0.5 * pbd[:, 0] + 2.5 * pbd[:, 1] + 0.5).long() | |
# ids of other boundaries | |
pbd = torch.stack([pbd + 1, pbd + 2, pbd + 3], dim=1) % 4 | |
# print(pbd) | |
pbd = bds[..., pbd].permute(2, 0, 1, 3).reshape(B, 2, -1) | |
srcpts = torch.stack([ | |
t[..., 0, 0], t[..., 0, -1], t[..., -1, 0], t[..., -1, -1], | |
ps.to('cuda') | |
], dim=2) | |
srcpts = torch.cat([pbd, srcpts], dim=2).permute(0, 2, 1) | |
dstpts = torch.stack([ | |
t[..., 0, 0], t[..., 0, -1], t[..., -1, 0], t[..., -1, -1], | |
pt.to('cuda') | |
], dim=2) | |
dstpts = torch.cat([pbd, dstpts], dim=2).permute(0, 2, 1) | |
# print(srcpts) | |
# print(dstpts) | |
tgs = self.tpswarper(srcpts, dstpts) | |
tt = F.grid_sample(tt, tgs.permute(0, 2, 3, 1), align_corners=True) | |
nd = random.randint(1, 5) | |
for ii in range(nd): | |
pm = (torch.rand(B, 2) - 0.5) * 0.2 | |
ps = (torch.rand(B, 2) - 0.5) * 1.95 | |
pt = ps + pm | |
pt = pt.clamp(-0.975, 0.975) | |
srcpts = torch.cat([ | |
t[..., -1, :], t[..., 0, :], t[..., 1 : -1, 0], t[..., 1 : -1, -1], | |
ps.unsqueeze(2).to('cuda') | |
], dim=2).permute(0, 2, 1) | |
dstpts = torch.cat([ | |
t[..., -1, :], t[..., 0, :], t[..., 1 : -1, 0], t[..., 1 : -1, -1], | |
pt.unsqueeze(2).to('cuda') | |
], dim=2).permute(0, 2, 1) | |
tgs = self.tpswarper(srcpts, dstpts) | |
tt = F.grid_sample(tt, tgs.permute(0, 2, 3, 1), align_corners=True) | |
tgs = tt | |
# sample tgs to gen invtgs | |
num_sample = 512 | |
# n = (H-2)*(W-2) | |
n = s * s | |
idx = torch.randperm(n) | |
idx = idx[:num_sample] | |
srcpts = tgs.reshape(-1, 2, n)[..., idx].permute(0, 2, 1) | |
dstpts = t.reshape(-1, 2, n)[..., idx].permute(0, 2, 1) | |
invtgs = self.tpswarper(srcpts, dstpts) | |
return tgs, invtgs | |
def equal_spacing_interpolate(self, gs, s): | |
def equal_bd(x, s): | |
# x is B 2 n | |
v0 = x[..., :-1] # B 2 n-1 | |
v = x[..., 1:] - x[..., :-1] | |
vn = v.norm(dim=1, keepdim=True) | |
v = v / vn | |
c = vn.sum(dim=2, keepdim=True) #B 1 1 | |
a = vn / c | |
b = torch.cumsum(a, dim=2) | |
b = torch.cat((torch.zeros(B, 1, 1, device='cuda'), b[..., :-1]), dim=2) | |
t = torch.linspace(1e-5, 1 - 1e-5, s).view(1, s, 1).to('cuda') | |
t = t - b # B s n-1 | |
# print(t) | |
tt = torch.cat((t, -torch.ones(B, s, 1, device='cuda')), dim=2) # B s n | |
tt = tt[..., 1:] * tt[..., :-1] # B s n-1 | |
tt = (tt < 0).float() | |
d = torch.matmul(v0, tt.permute(0, 2, 1)) + torch.matmul(v, (tt * t).permute(0, 2, 1)) # B 2 s | |
# print(d) | |
return d | |
gs = F.interpolate(gs, s, mode='bilinear', align_corners=True) | |
B = gs.size(0) | |
dst_cn = torch.tensor([[-1, -1], [1, -1], [1, 1], [-1, 1]], dtype=torch.float, device='cuda').expand(B, -1, -1) | |
src_cn = torch.stack([gs[..., 0, 0], gs[..., 0, -1], gs[..., -1, -1], gs[..., -1, 0]], dim=2).permute(0, 2, 1) | |
M = self.pspwarper.pspmat(src_cn, dst_cn).detach() | |
invM = self.pspwarper.pspmat(dst_cn, src_cn).detach() | |
pgs = self.pspwarper(gs.permute(0, 2, 3, 1).reshape(B, -1, 2), M).reshape(B, s, s, 2).permute(0, 3, 1, 2) | |
t = [pgs[..., 0, :], pgs[..., -1, :], pgs[..., :, 0], pgs[..., :, -1]] | |
d = [] | |
for x in t: | |
d.append(equal_bd(x, s)) | |
pgs[..., 0, :] = d[0] | |
pgs[..., -1, :] = d[1] | |
pgs[..., :, 0] = d[2] | |
pgs[..., :, -1] = d[3] | |
gs = self.pspwarper(pgs.permute(0, 2, 3, 1).reshape(B, -1, 2), invM).reshape(B, s, s, 2).permute(0, 3, 1, 2) | |
gs = self.global_post_warp(gs, s) | |
return gs | |
class LocalLoss(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def identity_loss(self, gs): | |
s = gs.size(2) | |
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s)) | |
t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand_as(gs) | |
loss = F.l1_loss(gs, t.detach()) | |
return loss | |
def direct_loss(self, gs, invtgs): | |
loss = F.l1_loss(gs, invtgs.detach()) | |
return loss | |
def warp_diff_loss(self, xd, xpd, tgs, invtgs): | |
loss_f = F.l1_loss(xd, F.grid_sample(tgs, xpd.permute(0, 2, 3, 1), align_corners=True).detach()) | |
loss_b = F.l1_loss(xpd, F.grid_sample(invtgs, xd.permute(0, 2, 3, 1), align_corners=True).detach()) | |
loss = loss_f + loss_b | |
return loss | |
class SupervisedLoss(nn.Module): | |
def __init__(self): | |
super().__init__() | |
s = 64 | |
self.tpswarper = TpsWarp(s) | |
def fm2bm(self, fm): | |
# B 3 N N | |
# fm in [0, 1] | |
B, _, s, _ = fm.size() | |
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s)) | |
t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand(B, -1, -1, -1) | |
srcpts = [] | |
dstpts = [] | |
for ii in range(B): | |
# mask | |
m = fm[ii, 2] | |
# z s | |
z = torch.nonzero(m, as_tuple=False) | |
num_sample = 512 | |
n = z.size(0) | |
# print(n) | |
idx = torch.randperm(n) | |
idx = idx[:num_sample] | |
dstpts.append(t[ii, :, z[idx, 0], z[idx, 1]]) | |
srcpts.append(fm[ii, : 2, z[idx, 0], z[idx, 1]] * 2 - 1) | |
srcpts = torch.stack(srcpts, dim=0).permute(0, 2, 1) | |
dstpts = torch.stack(dstpts, dim=0).permute(0, 2, 1) | |
# z = torch.nonzero(torch.abs(srcpts - 0) < 1e-5, as_tuple=False) | |
# print(z.size(0)) | |
# print(dstpts.min()) | |
# print(dstpts.max()) | |
bm = self.tpswarper(srcpts, dstpts) | |
# bm[bm > 1] = 1 | |
# bm[bm < -1] = -1 | |
return bm | |
def gloss(self, x, y): | |
xbd = gs_to_bd(x) | |
# y = self.fm2bm(y) | |
y = F.interpolate(y, 64, mode='bilinear', align_corners=True) | |
ybd = gs_to_bd(y).detach() | |
loss = F.l1_loss(xbd, ybd.detach()) | |
return loss | |
def lloss(self, x, y, dg): | |
# sample tgs to gen invtgs | |
B, _, s, _ = dg.size() | |
iy, ix = torch.meshgrid(torch.linspace(-1, 1, s), torch.linspace(-1, 1, s)) | |
t = torch.stack((ix, iy), dim=0).unsqueeze(0).to('cuda').expand(B, -1, -1, -1) | |
num_sample = 512 | |
# n = (H-2)*(W-2) | |
n = s * s | |
idx = torch.randperm(n) | |
idx = idx[:num_sample] | |
# srcpts = gs_to_bd(tgs) | |
# srcpts = torch.cat([srcpts, tgs[..., 1 : -1, 1 : -1].reshape(-1, 2, n)[..., idx].permute(0, 2, 1)], dim=1) | |
srcpts = dg.reshape(-1, 2, n)[..., idx].permute(0, 2, 1) | |
# dstpts = gs_to_bd(t) | |
# dstpts = torch.cat([dstpts, t[..., 1 : -1, 1 : -1].reshape(-1, 2, n)[..., idx].permute(0, 2, 1)], dim=1) | |
dstpts = t.reshape(-1, 2, n)[..., idx].permute(0, 2, 1) | |
invdg = self.tpswarper(srcpts, dstpts) | |
# compute dl = \phi(dg^-1, y) | |
dl = F.grid_sample(invdg, y.permute(0, 2, 3, 1), align_corners=True) | |
dl = F.interpolate(dl, 64, mode='bilinear', align_corners=True) | |
loss = F.l1_loss(x, dl.detach()) | |
# y = F.interpolate(y, 64, mode='bilinear', align_corners=True) | |
# loss = F.l1_loss(F.grid_sample(dg.detach(), x.permute(0, 2, 3, 1), align_corners=True), y) | |
return loss, dl.detach() | |