Spaces:
Sleeping
Sleeping
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -*- encoding: utf-8 -*- | |
# @Author: SWHL | |
# @Contact: liekkaskono@163.com | |
import argparse | |
import time | |
import cv2 | |
from pathlib import Path | |
import numpy as np | |
try: | |
from .utils import (DBPostProcess, create_operators, | |
transform, read_yaml, OrtInferSession) | |
except: | |
from utils import (DBPostProcess, create_operators, | |
transform, read_yaml, OrtInferSession) | |
root_dir = Path(__file__).resolve().parent | |
class TextDetector(): | |
def __init__(self, config=str(root_dir / 'config.yaml')): | |
if isinstance(config, str): | |
config = read_yaml(config) | |
config['model_path'] = str(root_dir / config['model_path']) | |
self.preprocess_op = create_operators(config['pre_process']) | |
self.postprocess_op = DBPostProcess(**config['post_process']) | |
session_instance = OrtInferSession(config) | |
self.session = session_instance.session | |
self.input_name = session_instance.get_input_name() | |
def __call__(self, img): | |
if img is None: | |
raise ValueError('img is None') | |
ori_im_shape = img.shape[:2] | |
data = {'image': img} | |
data = transform(data, self.preprocess_op) | |
img, shape_list = data | |
if img is None: | |
return None, 0 | |
img = np.expand_dims(img, axis=0).astype(np.float32) | |
shape_list = np.expand_dims(shape_list, axis=0) | |
starttime = time.time() | |
preds = self.session.run(None, {self.input_name: img}) | |
post_result = self.postprocess_op(preds[0], shape_list) | |
dt_boxes = post_result[0]['points'] | |
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im_shape) | |
elapse = time.time() - starttime | |
return dt_boxes, elapse | |
def order_points_clockwise(self, pts): | |
""" | |
reference from: | |
https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py | |
sort the points based on their x-coordinates | |
""" | |
xSorted = pts[np.argsort(pts[:, 0]), :] | |
# grab the left-most and right-most points from the sorted | |
# x-roodinate points | |
leftMost = xSorted[:2, :] | |
rightMost = xSorted[2:, :] | |
# now, sort the left-most coordinates according to their | |
# y-coordinates so we can grab the top-left and bottom-left | |
# points, respectively | |
leftMost = leftMost[np.argsort(leftMost[:, 1]), :] | |
(tl, bl) = leftMost | |
rightMost = rightMost[np.argsort(rightMost[:, 1]), :] | |
(tr, br) = rightMost | |
rect = np.array([tl, tr, br, bl], dtype="float32") | |
return rect | |
def clip_det_res(self, points, img_height, img_width): | |
for pno in range(points.shape[0]): | |
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) | |
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) | |
return points | |
def filter_tag_det_res(self, dt_boxes, image_shape): | |
img_height, img_width = image_shape[:2] | |
dt_boxes_new = [] | |
for box in dt_boxes: | |
box = self.order_points_clockwise(box) | |
box = self.clip_det_res(box, img_height, img_width) | |
rect_width = int(np.linalg.norm(box[0] - box[1])) | |
rect_height = int(np.linalg.norm(box[0] - box[3])) | |
if rect_width <= 3 or rect_height <= 3: | |
continue | |
dt_boxes_new.append(box) | |
dt_boxes = np.array(dt_boxes_new) | |
return dt_boxes | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--config_path', type=str, default='config.yaml') | |
parser.add_argument('--image_path', type=str, default=None) | |
args = parser.parse_args() | |
config = read_yaml(args.config_path) | |
text_detector = TextDetector(config) | |
img = cv2.imread(args.image_path) | |
dt_boxes, elapse = text_detector(img) | |
from utils import draw_text_det_res | |
src_im = draw_text_det_res(dt_boxes, args.image_path) | |
cv2.imwrite('det_results.jpg', src_im) | |
print('The det_results.jpg has been saved in the current directory.') | |