Spaces:
Running
Running
hjc-owo
commited on
Commit
·
b57e8bf
1
Parent(s):
966ae59
fix(python): README.md
Browse files- README copy.md +0 -304
- README.md +1 -0
README copy.md
DELETED
@@ -1,304 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: SVGRender
|
3 |
-
emoji: 💻
|
4 |
-
colorFrom: gray
|
5 |
-
colorTo: yellow
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.20.1
|
8 |
-
python_version: 3.10.12
|
9 |
-
app_file: app.py
|
10 |
-
pinned: false
|
11 |
-
license: apache-2.0
|
12 |
-
---
|
13 |
-
|
14 |
-
<h1 id="ptsvg" align="center">Pytorch-SVGRender</h1>
|
15 |
-
|
16 |
-
<p align="center">
|
17 |
-
<a href="https://www.python.org/"><img src="https://img.shields.io/badge/python-3.10-or?logo=python" alt="pyhton"></a>
|
18 |
-
<a href="http://mozilla.org/MPL/2.0/"><img src="https://img.shields.io/badge/license-MPL2.0-orange" alt="license"></a>
|
19 |
-
<a href="https://ximinng.github.io/PyTorch-SVGRender-project/"><img src="https://img.shields.io/badge/website-Gitpage-yellow" alt="website"></a>
|
20 |
-
<a href="https://pytorch-svgrender.readthedocs.io/en/latest/index.html"><img src="https://img.shields.io/badge/docs-readthedocs-purple" alt="docs"></a>
|
21 |
-
</p>
|
22 |
-
|
23 |
-
<div align="center">
|
24 |
-
<img src="./assets/logo.png" style="width: 350px; height: 300px;" alt="Pytorch-SVGRender">
|
25 |
-
<p><strong>Pytorch-SVGRender: </strong>The go-to library for differentiable rendering methods for SVG generation.</p>
|
26 |
-
</div>
|
27 |
-
<p align="center">
|
28 |
-
<a href="#recent-updates">Updates</a> •
|
29 |
-
<a href="#table-of-contents">Table of Contents</a> •
|
30 |
-
<a href="#installation">Installation</a> •
|
31 |
-
<a href="#quickstart">Quickstart</a> •
|
32 |
-
<a href="#faq">FAQ</a> •
|
33 |
-
<a href="#todo">TODO</a> •
|
34 |
-
<a href="#acknowledgement">Acknowledgment</a> •
|
35 |
-
<a href="#citation">Citation</a> •
|
36 |
-
<a href="#licence">Licence</a>
|
37 |
-
</p>
|
38 |
-
|
39 |
-
<h2 align="center">Recent Updates</h2>
|
40 |
-
|
41 |
-
- [12/2023] 🔥 We open-sourced Pytorch-SVGRender V1.0.
|
42 |
-
|
43 |
-
<h2 align="center">Table of Contents</h2>
|
44 |
-
<p align="right"><a href="#ptsvg"><sup>▴ Back to top</sup></a></p>
|
45 |
-
|
46 |
-
### 1. Image Vectorization
|
47 |
-
|
48 |
-
- DiffVG: Differentiable Vector Graphics Rasterization for Editing and Learning (`SIGGRAPH 2020`)
|
49 |
-
|
50 |
-
[[Project]](https://people.csail.mit.edu/tzumao/diffvg/) [[Paper]](https://cseweb.ucsd.edu/~tzli/diffvg/diffvg.pdf) [[Code]](https://github.com/BachiLi/diffvg)
|
51 |
-
|
52 |
-
DiffVG is a differentiable rasterizer for 2D vector graphics. **This repository is heavily based on DiffVG.**
|
53 |
-
|
54 |
-
- LIVE: Towards Layer-wise Image Vectorization (`CVPR 2022`)
|
55 |
-
|
56 |
-
[[Project]](https://ma-xu.github.io/LIVE/) [[Paper]](https://ma-xu.github.io/LIVE/index_files/CVPR22_LIVE_main.pdf) [[Code]](https://github.com/Picsart-AI-Research/LIVE-Layerwise-Image-Vectorization)
|
57 |
-
|
58 |
-
- CLIPasso: Semantically-Aware Object Sketching (`SIGGRAPH 2022`)
|
59 |
-
|
60 |
-
[[Project]](https://clipasso.github.io/clipasso/) [[Paper]](https://arxiv.org/abs/2202.05822) [[Code]](https://github.com/yael-vinker/CLIPasso)
|
61 |
-
|
62 |
-
- CLIPascene: Scene Sketching with Different Types and Levels of Abstraction (`ICCV 2023`)
|
63 |
-
|
64 |
-
[[Project]](https://clipascene.github.io/CLIPascene/) [[Paper]](https://arxiv.org/abs/2211.17256) [[Code]](https://github.com/yael-vinker/SceneSketch)
|
65 |
-
|
66 |
-
### 2. Text-to-SVG Synthesis
|
67 |
-
|
68 |
-
- CLIPDraw: Exploring Text-to-Drawing Synthesis through Language-Image Encoders (`NIPS 2022`)
|
69 |
-
|
70 |
-
[[Paper]](https://arxiv.org/abs/2106.14843) [[Code]](https://github.com/kvfrans/clipdraw)
|
71 |
-
|
72 |
-
- StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Synthesis
|
73 |
-
|
74 |
-
[[Live]](https://slideslive.com/38970834/styleclipdraw-coupling-content-and-style-in-texttodrawing-synthesis?ref=account-folder-92044-folders) [[Paper]](https://arxiv.org/abs/2202.12362) [[Code]](https://github.com/pschaldenbrand/StyleCLIPDraw)
|
75 |
-
|
76 |
-
- CLIPFont: Texture Guided Vector WordArt Generation (`BMVC 2022`)
|
77 |
-
|
78 |
-
[[Paper]](https://bmvc2022.mpi-inf.mpg.de/0543.pdf) [[Code]](https://github.com/songyiren98/CLIPFont)
|
79 |
-
|
80 |
-
- VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models (`CVPR 2023`)
|
81 |
-
|
82 |
-
[[Project]](https://vectorfusion.github.io/) [[Paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Jain_VectorFusion_Text-to-SVG_by_Abstracting_Pixel-Based_Diffusion_Models_CVPR_2023_paper.pdf)
|
83 |
-
|
84 |
-
- DiffSketcher: Text Guided Vector Sketch Synthesis through Latent Diffusion Models (`NIPS 2023`)
|
85 |
-
|
86 |
-
[[Project]](https://ximinng.github.io/DiffSketcher-project/) [[Live]](https://neurips.cc/virtual/2023/poster/72425) [[Paper]](https://arxiv.org/abs/2306.14685) [[Code]](https://github.com/ximinng/DiffSketcher)
|
87 |
-
|
88 |
-
- Word-As-Image for Semantic Typography (`SIGGRAPH 2023`)
|
89 |
-
|
90 |
-
[[Project]](https://wordasimage.github.io/Word-As-Image-Page/) [[Paper]](https://arxiv.org/abs/2303.01818) [[Code]](https://github.com/Shiriluz/Word-As-Image)
|
91 |
-
|
92 |
-
- SVGDreamer: Text Guided SVG Generation with Diffusion Model (`CVPR 2024`)
|
93 |
-
|
94 |
-
[[Project]](https://ximinng.github.io/SVGDreamer-project/) [[Paper]](https://arxiv.org/abs/2312.16476) [[code]](https://github.com/ximinng/SVGDreamer)
|
95 |
-
|
96 |
-
<h2 align="center">Installation</h2>
|
97 |
-
|
98 |
-
You can follow the steps below to quickly get up and running with PyTorch-SVGRender.
|
99 |
-
These steps will let you run quick inference locally.
|
100 |
-
|
101 |
-
In the top level directory run,
|
102 |
-
|
103 |
-
```bash
|
104 |
-
sh script/install.sh
|
105 |
-
```
|
106 |
-
|
107 |
-
Note: Make sure that the script file has execution **permissions** (you can give them using `chmod +x script.sh`), and
|
108 |
-
then run the script.
|
109 |
-
|
110 |
-
For more information, please refer to
|
111 |
-
the [Install.md](https://github.com/ximinng/PyTorch-SVGRender/blob/main/Install.md).
|
112 |
-
|
113 |
-
<h2 align="center">Quickstart</h2>
|
114 |
-
<p align="right"><a href="#ptsvg"><sup>▴ Back to top</sup></a></p>
|
115 |
-
|
116 |
-
**For more information, [read the docs](https://pytorch-svgrender.readthedocs.io/en/latest/index.html).**
|
117 |
-
|
118 |
-
### 1. Basic Usage
|
119 |
-
|
120 |
-
**DiffVG** vectorizes any raster images:
|
121 |
-
|
122 |
-
```shell
|
123 |
-
python svg_render.py x=diffvg target='./data/fallingwater.png'
|
124 |
-
# change 'num_paths' and 'num_iter' for better results
|
125 |
-
python svg_render.py x=diffvg target='./data/fallingwater.png' x.num_paths=512 x.num_iter=2000
|
126 |
-
```
|
127 |
-
|
128 |
-
**LIVE** vectorizes the raster emojis images (in original PNG format):
|
129 |
-
|
130 |
-
```shell
|
131 |
-
python svg_render.py x=live target='./data/simile.png'
|
132 |
-
# change 'num_paths' and 'schedule_each' for better results
|
133 |
-
python svg_render.py x=live target='./data/simile.png' x.num_paths=5 x.schedule_each=1
|
134 |
-
```
|
135 |
-
|
136 |
-
**CLIPasso** synthesizes vectorized sketches from images:
|
137 |
-
|
138 |
-
**note:** first download the U2Net model `sh script/download_u2net.sh`.
|
139 |
-
|
140 |
-
```shell
|
141 |
-
python svg_render.py x=clipasso target='./data/horse.png'
|
142 |
-
```
|
143 |
-
|
144 |
-
**CLIPascene** synthesizes vectorized sketches from images:
|
145 |
-
|
146 |
-
**note:** first download the U2Net model `sh script/download_u2net.sh`, and make sure the `./data/background` folder and
|
147 |
-
the `./data/scene` folder exist with target images.
|
148 |
-
|
149 |
-
```shell
|
150 |
-
python svg_render.py x=clipascene target='ballerina.png'
|
151 |
-
```
|
152 |
-
|
153 |
-
**CLIPDraw** synthesizes SVGs based on text prompts:
|
154 |
-
|
155 |
-
```shell
|
156 |
-
python svg_render.py x=clipdraw "prompt='a photo of a cat'"
|
157 |
-
```
|
158 |
-
|
159 |
-
**StyleCLIPDraw** synthesizes SVG based on a text prompt and a reference image:
|
160 |
-
|
161 |
-
```shell
|
162 |
-
python svg_render.py x=styleclipdraw "prompt='a photo of a cat'" target='./data/starry.png'
|
163 |
-
```
|
164 |
-
|
165 |
-
**CLIPFont** styles vector fonts according to text prompts:
|
166 |
-
|
167 |
-
```shell
|
168 |
-
python svg_render.py x=clipfont "prompt='Starry Night by Vincent van gogh'" target='./data/alphabet1.svg'
|
169 |
-
```
|
170 |
-
|
171 |
-
---
|
172 |
-
|
173 |
-
> Because the following methods rely on stable diffusion, add `diffuser.download=True` to the command the **first time** you
|
174 |
-
run the script.
|
175 |
-
|
176 |
-
**SVGDreamer** generates various styles of SVG based on text prompts. It supports the use of six vector primitives,
|
177 |
-
including Iconography, Sketch, Pixel Art, Low-Poly, Painting, and Ink and Wash.
|
178 |
-
|
179 |
-
```shell
|
180 |
-
# primitive: iconography
|
181 |
-
## 1. German shepherd
|
182 |
-
python svg_render.py x=svgdreamer "prompt='A colorful German shepherd in vector art. tending on artstation.'" save_step=30 x.guidance.n_particle=6 x.guidance.vsd_n_particle=4 x.guidance.phi_n_particle=2 result_path='./svgdreamer/GermanShepherd'
|
183 |
-
## 2. sydney opera house
|
184 |
-
python svg_render.py x=svgdreamer "prompt='Sydney opera house. oil painting. by Van Gogh'" save_step=30 x.guidance.n_particle=6 x.guidance.vsd_n_particle=4 x.guidance.phi_n_particle=2 x.num_paths=512 result_path='./svgdreamer/Sydney'
|
185 |
-
# primitive: low-ploy
|
186 |
-
python svg_render.py x=svgdreamer "prompt='A picture of a bald eagle. low-ploy. polygon'" x.style='low-poly' save_step=30 x.guidance.n_particle=6 x.guidance.vsd_n_particle=4 x.guidance.phi_n_particle=2 x.guidance.num_iter=1000 result_path='./svgdreamer/eagle'
|
187 |
-
# primitive: pixel-art
|
188 |
-
python svg_render.py x=svgdreamer "prompt='Darth vader with lightsaber. ultrarealistic. pixelart. trending on artstation.'" x.style='pixelart' save_step=30 x.guidance.n_particle=6 x.guidance.vsd_n_particle=4 x.guidance.phi_n_particle=2 x.guidance.num_iter=1000 result_path='./svgdreamer/DarthVader'
|
189 |
-
# primitive: painting
|
190 |
-
python svg_render.py x=svgdreamer "prompt='self portrait of Van Gogh. oil painting. cmyk portrait. multi colored. defiant and beautiful. cmyk. expressive eyes.'" x.style='painting' save_step=50 x.guidance.n_particle=6 x.guidance.vsd_n_particle=4 x.guidance.phi_n_particle=2 x.guidance.t_schedule='randint' x.num_paths=1500 result_path='./svgdreamer/VanGogh_portrait'
|
191 |
-
# primitive: sketch
|
192 |
-
python svg_render.py x=svgdreamer "prompt='A free-hand drawing of A speeding Lamborghini. black and white drawing.'" x.style='sketch' save_step=30 x.guidance.n_particle=6 x.guidance.vsd_n_particle=4 x.guidance.phi_n_particle=2 x.guidance.t_schedule='randint' x.num_paths=128 result_path='./svgdreamer/Lamborghini'
|
193 |
-
# primitive: ink and wash
|
194 |
-
python svg_render.py x=svgdreamer "prompt='Big Wild Goose Pagoda. ink style. Minimalist abstract art grayscale watercolor.'" x.style='ink' save_step=30 x.guidance.n_particle=6 x.guidance.vsd_n_particle=4 x.guidance.phi_n_particle=2 x.guidance.t_schedule='randint' x.num_paths=128 x.width=6 result_path='./svgdreamer/BigWildGoosePagoda'
|
195 |
-
```
|
196 |
-
|
197 |
-
**VectorFusion** synthesizes SVGs in various styles based on text prompts:
|
198 |
-
|
199 |
-
```shell
|
200 |
-
# Iconography style
|
201 |
-
python svg_render.py x=vectorfusion x.style='iconography' "prompt='a panda rowing a boat in a pond. minimal flat 2d vector icon. lineal color. trending on artstation.'"
|
202 |
-
# PixelArt style
|
203 |
-
python svg_render.py x=vectorfusion x.style='pixelart' "prompt='a panda rowing a boat in a pond. pixel art. trending on artstation.'"
|
204 |
-
# Sketch style
|
205 |
-
python svg_render.py x=vectorfusion x.style='sketch' "prompt='a panda rowing a boat in a pond. minimal 2d line drawing. trending on artstation.'"
|
206 |
-
```
|
207 |
-
|
208 |
-
Following SVGDreamer, we've added three additional styles (`Paining`, `Ink and Wash` and `low-ploy`) to VectorFusion.
|
209 |
-
|
210 |
-
**DiffSketcher** synthesizes vector sketches based on text prompts:
|
211 |
-
|
212 |
-
```shell
|
213 |
-
# DiffSketcher
|
214 |
-
python svg_render.py x=diffsketcher "prompt='a photo of Sydney opera house'" x.token_ind=5 seed=8019
|
215 |
-
# DiffSketcher, variable stroke width
|
216 |
-
python svg_render.py x=diffsketcher "prompt='a photo of Sydney opera house'" x.token_ind=5 x.optim_width=True seed=8019
|
217 |
-
# DiffSketcher RGBA version
|
218 |
-
python svg_render.py x=diffsketcher "prompt='a photo of Sydney opera house'" x.token_ind=5 x.optim_width=True x.optim_rgba=True x.optim_opacity=False seed=8019
|
219 |
-
# DiffSketcher + style transfer
|
220 |
-
python svg_render.py x=stylediffsketcher "prompt='The French Revolution. highly detailed. 8k. ornate. intricate. cinematic. dehazed. atmospheric. oil painting. by Van Gogh'" x.token_ind=4 x.num_paths=2000 target='./data/starry.png' seed=876809
|
221 |
-
```
|
222 |
-
|
223 |
-
**Word-As-Image** follow a text prompt to style a letter in a word:
|
224 |
-
|
225 |
-
```shell
|
226 |
-
# Inject the meaning of the word bunny into the 'Y' in the word 'BUNNY'
|
227 |
-
python svg_render.py x=wordasimage x.word='BUNNY' prompt='BUNNY' x.optim_letter='Y'
|
228 |
-
```
|
229 |
-
|
230 |
-
### 2. SDS Loss based Approach
|
231 |
-
|
232 |
-
This is achieved by utilizing a pretrained text-to-image diffusion model as a strong image prior to supervise the
|
233 |
-
training of the PyDiffVG, enabling rendering SVG alignment with the text. This remarkable capability is fundamentally
|
234 |
-
grounded in the use of Score Distillation Sampling (SDS). SDS acts as the core mechanism that lifts raster images from
|
235 |
-
diffusion models to the SVG domain, enabling the training of SVG parameters without images.
|
236 |
-
This includes the methods VectorFusion, DiffSketcher and SVGDreamer.
|
237 |
-
|
238 |
-
We only compare the performance of SDS, which means that no other loss is used:
|
239 |
-
|
240 |
-
```shell
|
241 |
-
# SDS loss
|
242 |
-
python svg_render.py x=vectorfusion "prompt='a panda rowing a boat in a pond. minimal flat 2d vector icon. lineal color. trending on artstation.'"
|
243 |
-
# Input Augmentation SDS loss (LSDS loss)
|
244 |
-
python svg_render.py x=vectorfusion x.style='sketch' "prompt='an elephant. minimal 2d line drawing. trending on artstation.'"
|
245 |
-
# Input Augmentation SDS loss (ASDS loss)
|
246 |
-
python svg_render.py x=diffsketcher "prompt='an elephant. minimal 2d line drawing. trending on artstation.'" x.token_ind=2 x.sds.grad_scale=1 x.sds.num_aug=4 x.clip.vis_loss=0 x.perceptual.coeff=0 x.opacity_delta=0.3
|
247 |
-
# Vectorized Particle-based Score Distillation (VPSD loss)
|
248 |
-
python svg_render.py x=svgdreamer "prompt='a panda rowing a boat in a pond. minimal flat 2d vector icon. lineal color. trending on artstation.'" save_step=60 x.guidance.n_particle=6 x.guidance.vsd_n_particle=4 x.guidance.phi_n_particle=2
|
249 |
-
```
|
250 |
-
|
251 |
-
<h2 align="center">FAQ</h2>
|
252 |
-
<p align="right"><a href="#ptsvg"><sup>▴ Back to top</sup></a></p>
|
253 |
-
|
254 |
-
- Q: Where can I get more scripts and visualizations?
|
255 |
-
- A: check the [pytorch-svgrender.readthedocs.io](https://pytorch-svgrender.readthedocs.io/en/latest/index.html).
|
256 |
-
|
257 |
-
- Q: An error says HuggingFace cannot find the model in the disk cache.
|
258 |
-
- A: Add *`diffuser.download=True`* to the command for downloading model checkpoints the **first time** you run the script.
|
259 |
-
|
260 |
-
<h2 align="center">TODO</h2>
|
261 |
-
<p align="right"><a href="#ptsvg"><sup>▴ Back to top</sup></a></p>
|
262 |
-
|
263 |
-
- [x] integrated SVGDreamer.
|
264 |
-
|
265 |
-
<h2 align="center">Acknowledgement</h2>
|
266 |
-
<p align="right"><a href="#ptsvg"><sup>▴ Back to top</sup></a></p>
|
267 |
-
|
268 |
-
The project is built based on the following repository:
|
269 |
-
|
270 |
-
[BachiLi/diffvg](https://github.com/BachiLi/diffvg),
|
271 |
-
[huggingface/diffusers](https://github.com/huggingface/diffusers),
|
272 |
-
[threestudio-project/threestudio](https://github.com/threestudio-project/threestudio),
|
273 |
-
[yael-vinker/CLIPasso](https://github.com/yael-vinker/CLIPasso),
|
274 |
-
[ximinng/DiffSketcher](https://github.com/ximinng/DiffSketcher),
|
275 |
-
[THUDM/ImageReward](https://github.com/THUDM/ImageReward),
|
276 |
-
[advimman/lama](https://github.com/advimman/lama)
|
277 |
-
|
278 |
-
We gratefully thank the authors for their wonderful works.
|
279 |
-
|
280 |
-
<h2 align="center">Citation</h2>
|
281 |
-
<p align="right"><a href="#ptsvg"><sup>▴ Back to top</sup></a></p>
|
282 |
-
|
283 |
-
If you use this code for your research, please cite the following work:
|
284 |
-
|
285 |
-
```
|
286 |
-
@article{xing2023svgdreamer,
|
287 |
-
title={SVGDreamer: Text Guided SVG Generation with Diffusion Model},
|
288 |
-
author={Xing, Ximing and Zhou, Haitao and Wang, Chuang and Zhang, Jing and Xu, Dong and Yu, Qian},
|
289 |
-
journal={arXiv preprint arXiv:2312.16476},
|
290 |
-
year={2023}
|
291 |
-
}
|
292 |
-
@inproceedings{xing2023diffsketcher,
|
293 |
-
title={DiffSketcher: Text Guided Vector Sketch Synthesis through Latent Diffusion Models},
|
294 |
-
author={XiMing Xing and Chuang Wang and Haitao Zhou and Jing Zhang and Qian Yu and Dong Xu},
|
295 |
-
booktitle={Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS)},
|
296 |
-
year={2023},
|
297 |
-
url={https://openreview.net/forum?id=CY1xatvEQj}
|
298 |
-
}
|
299 |
-
```
|
300 |
-
|
301 |
-
<h2 align="center">Licence</h2>
|
302 |
-
<p align="right"><a href="#ptsvg"><sup>▴ Back to top</sup></a></p>
|
303 |
-
|
304 |
-
This work is licensed under a **Mozilla Public License Version 2.0**.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -5,6 +5,7 @@ colorFrom: indigo
|
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.21.0
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.21.0
|
8 |
+
python_version: 3.10.12
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
license: apache-2.0
|