Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# Author: ximing | |
# Description: LIVE pipeline | |
# Copyright (c) 2023, XiMing Xing. | |
# License: MIT License | |
import shutil | |
from pathlib import Path | |
from typing import AnyStr | |
from PIL import Image | |
from tqdm.auto import tqdm | |
import torch | |
from torchvision import transforms | |
from pytorch_svgrender.libs.engine import ModelState | |
from pytorch_svgrender.painter.live import Painter, PainterOptimizer, xing_loss_fn | |
from pytorch_svgrender.plt import plot_img, plot_couple | |
class LIVEPipeline(ModelState): | |
def __init__(self, args): | |
logdir_ = f"sd{args.seed}" \ | |
f"-im{args.x.image_size}" \ | |
f"-P{args.x.num_paths}" | |
super().__init__(args, log_path_suffix=logdir_) | |
# create log dir | |
self.png_logs_dir = self.result_path / "png_logs" | |
self.svg_logs_dir = self.result_path / "svg_logs" | |
if self.accelerator.is_main_process: | |
self.png_logs_dir.mkdir(parents=True, exist_ok=True) | |
self.svg_logs_dir.mkdir(parents=True, exist_ok=True) | |
# make video log | |
self.make_video = self.args.mv | |
if self.make_video: | |
self.frame_idx = 0 | |
self.frame_log_dir = self.result_path / "frame_logs" | |
self.frame_log_dir.mkdir(parents=True, exist_ok=True) | |
def get_path_schedule(self, schedule_each): | |
if self.x_cfg.path_schedule == 'repeat': | |
return int(self.x_cfg.num_paths / schedule_each) * [schedule_each] | |
elif self.x_cfg.path_schedule == 'list': | |
assert isinstance(self.x_cfg.schedule_each, list) | |
return schedule_each | |
else: | |
raise NotImplementedError | |
def target_file_preprocess(self, tar_path): | |
process_comp = transforms.Compose([ | |
transforms.Resize(size=(self.x_cfg.image_size, self.x_cfg.image_size)), | |
transforms.ToTensor(), | |
transforms.Lambda(lambda t: t.unsqueeze(0)), | |
]) | |
tar_pil = Image.open(tar_path).convert("RGB") # open file | |
target_img = process_comp(tar_pil) # preprocess | |
target_img = target_img.to(self.device) | |
return target_img | |
def painterly_rendering(self, img_path: AnyStr): | |
# load target file | |
target_file = Path(img_path) | |
assert target_file.exists(), f"{target_file} is not exist!" | |
shutil.copy(target_file, self.result_path) # copy target file | |
target_img = self.target_file_preprocess(target_file.as_posix()) | |
self.print(f"load image file from: '{target_file.as_posix()}'") | |
# log path_schedule | |
path_schedule = self.get_path_schedule(self.x_cfg.schedule_each) | |
self.print(f"path_schedule: {path_schedule}") | |
renderer = Painter(target_img, | |
self.args.diffvg, | |
self.x_cfg.num_segments, | |
self.x_cfg.segment_init, | |
self.x_cfg.radius, | |
canvas_size=self.x_cfg.image_size, | |
trainable_bg=self.x_cfg.trainable_bg, | |
stroke=self.x_cfg.train_stroke, | |
stroke_width=self.x_cfg.width, | |
device=self.device) | |
# first init center | |
renderer.component_wise_path_init(pred=None, init_type=self.x_cfg.coord_init) | |
num_iter = self.x_cfg.num_iter | |
optimizer_list = [ | |
PainterOptimizer(renderer, num_iter, self.x_cfg.lr_base, | |
self.x_cfg.train_stroke, self.x_cfg.trainable_bg) | |
for _ in range(len(path_schedule)) | |
] | |
pathn_record = [] | |
loss_weight_keep = 0 | |
loss_weight = 1 | |
total_step = len(path_schedule) * num_iter | |
with tqdm(initial=self.step, total=total_step, disable=not self.accelerator.is_main_process) as pbar: | |
for path_idx, pathn in enumerate(path_schedule): | |
# record path | |
pathn_record.append(pathn) | |
# init graphic | |
img = renderer.init_image(num_paths=pathn) | |
plot_img(img, self.result_path, fname=f"init_img_{path_idx}") | |
# rebuild optimizer | |
optimizer_list[path_idx].init_optimizers() | |
pbar.write(f"=> adding {pathn} paths, n_path: {sum(pathn_record)}, " | |
f"path_schedule: {self.x_cfg.path_schedule}") | |
for t in range(num_iter): | |
raster_img = renderer.get_image(step=t).to(self.device) | |
if self.make_video and (t % self.args.framefreq == 0 or t == num_iter - 1): | |
plot_img(raster_img, self.frame_log_dir, fname=f"iter{self.frame_idx}") | |
self.frame_idx += 1 | |
if self.x_cfg.use_distance_weighted_loss: | |
loss_weight = renderer.calc_distance_weight(loss_weight_keep) | |
# UDF Loss for Reconstruction | |
if self.x_cfg.use_l1_loss: | |
loss_recon = torch.nn.functional.l1_loss(raster_img, target_img) | |
else: # default: MSE loss | |
loss_mse = ((raster_img - target_img) ** 2) | |
loss_recon = (loss_mse.sum(1) * loss_weight).mean() | |
# Xing Loss for Self-Interaction Problem | |
loss_xing = xing_loss_fn(renderer.get_point_parameters()) * self.x_cfg.xing_loss_weight | |
# total loss | |
loss = loss_recon + loss_xing | |
pbar.set_description( | |
f"lr: {optimizer_list[path_idx].get_lr():.4f}, " | |
f"L_total: {loss.item():.4f}, " | |
f"L_recon: {loss_recon.item():.4f}, " | |
f"L_xing: {loss_xing.item()}" | |
) | |
# optimization | |
for i in range(path_idx + 1): | |
optimizer_list[i].zero_grad_() | |
loss.backward() | |
for i in range(path_idx + 1): | |
optimizer_list[i].step_() | |
renderer.clip_curve_shape() | |
if self.x_cfg.lr_schedule: | |
for i in range(path_idx + 1): | |
optimizer_list[i].update_lr() | |
if self.step % self.args.save_step == 0 and self.accelerator.is_main_process: | |
plot_couple(target_img, | |
raster_img, | |
self.step, | |
output_dir=self.png_logs_dir.as_posix(), | |
fname=f"iter{self.step}") | |
renderer.save_svg(self.svg_logs_dir / f"svg_iter{self.step}.svg") | |
self.step += 1 | |
pbar.update(1) | |
# end a set of path optimization | |
if self.x_cfg.use_distance_weighted_loss: | |
loss_weight_keep = loss_weight.detach().cpu().numpy() * 1 | |
# recalculate the coordinates for the new join path | |
renderer.component_wise_path_init(pred=raster_img, init_type=self.x_cfg.coord_init) | |
renderer.save_svg(self.result_path / "final_svg.svg") | |
if self.make_video: | |
from subprocess import call | |
call([ | |
"ffmpeg", | |
"-framerate", f"{self.args.framerate}", | |
"-i", (self.frame_log_dir / "iter%d.png").as_posix(), | |
"-vb", "20M", | |
(self.result_path / "live_rendering.mp4").as_posix() | |
]) | |
self.close(msg="painterly rendering complete.") | |