Spaces:
Running
Running
# %% | |
try: | |
from ipytorch import logging | |
except Exception as e: | |
import logging | |
from typing import Any, Optional, Protocol, Iterable, Callable | |
from numpy.lib import extract | |
from tqdm.auto import tqdm | |
from evaluate.evaluation_suite import EvaluationSuite | |
import evaluate | |
import numpy as np | |
import datasets | |
import pandas as pd | |
from .tasks import * | |
from .utils import is_equiv | |
class ReasoningMetric(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def _info(self): | |
# if self.config_name in ["cmmlu"]: | |
features = datasets.Features( | |
{ | |
"responses": datasets.Value("string"), | |
# "responses": datasets.Sequence(datasets.Value("float")), | |
"references": datasets.Value("string"), | |
} | |
) | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.EvaluationModuleInfo( | |
# This is the description that will appear on the modules page. | |
# module_type="measurement", | |
description="", | |
citation="", | |
inputs_description="", | |
# This defines the format of each prediction and reference | |
features=features, | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"], | |
) | |
def _compute(self, responses, references, verbose=False): | |
extract_responses, extract_references = getattr(Metrics, self.config_name)( | |
responses, references | |
) | |
df = pd.DataFrame( | |
{ | |
"responses": responses, | |
"references": references, | |
} | |
) | |
df["extract_responses"] = extract_responses | |
df["extract_references"] = extract_references | |
print(df) | |
results = { | |
"Accuracy": (df["extract_references"] == df["extract_responses"]) | |
.astype(int) | |
.mean(), | |
} | |
logging.info(results) | |
if verbose: | |
results["df"] = df | |
return results | |
class Suite(EvaluationSuite): | |
task_class = Task | |
def run( | |
self, | |
model_or_pipeline: Any, | |
) -> dict[str, float]: | |
self.assert_suite_nonempty() | |
def run_tasks(tasks): | |
for task in (bar := tqdm(tasks, leave=False)): | |
bar.desc = f"complete {task.name}." | |
if task.name not in self.cached_result: | |
self.cached_result[task.name] = task.run(model_or_pipeline) | |
results = [self.cached_result[task.name] for task in tasks] | |
return pd.DataFrame(results).mean().to_dict() | |
if isinstance(self.suite, dict): | |
for category, tasks in (bar := tqdm(self.suite.items())): | |
bar.desc = f"complete {category}." | |
logging.warning(f"Combined results {category}: {run_tasks(tasks)}") | |
else: | |
logging.warning(f"Combined results: {run_tasks(self.suite)}") | |
return self.cached_result | |
def add(self, name): | |
self.load(name) | |
def load(self, name): | |
chat = False | |
match name: | |
case _ if "chat" in name: | |
chat = True | |
match name: | |
case _ if name.startswith("mmlu"): | |
suite = MMLU.suite(chat=chat) | |
case _ if name.startswith("cmmlu"): | |
suite = CMMLU.suite(chat=chat) | |
case "gsm8k": | |
suite = Task( | |
dataset_name=("gsm8k", "main"), | |
metric_name=("sustech/tlem", "gsm8k"), | |
input_column="question", | |
label_column="answer", | |
) | |
case "bbh": | |
suite = BBH.suite() | |
case "arc": | |
suite = ARC.suite() | |
case "hellaswag": | |
suite = HellaSwag.suite() | |
case "drop": | |
suite = DROP.suite() | |
case "winogrande": | |
suite = Winogrande.suite() | |
case _ if name.startswith("ceval"): | |
suite = CEVAL.suite(chat=chat) | |
case "mt_bench": | |
suite = Task( | |
dataset_name="SUSTech/mt_bench_judge", | |
split="train", | |
prompt=mt_bench_prompt | |
# metric_name=("sustech/tlem", "gsm8k"), | |
) | |
match name: | |
case _ if "test" in name: | |
suite = suite["Test"] | |
self.suite = suite | |
def __init__(self, name="tlem"): | |
super().__init__(name) | |
self.cached_result = {} | |
self.suite = [] | |