Spaces:
Running
Running
JaydenCool
commited on
Commit
β’
c1bc2bf
1
Parent(s):
d7041cd
test
Browse files
app.py
CHANGED
@@ -61,13 +61,7 @@ def get_dataset_csv(
|
|
61 |
):
|
62 |
df = ORIGINAL_DF[ORIGINAL_DF['Size'].isin(model_size)]
|
63 |
df = df.drop(columns="Size")
|
64 |
-
|
65 |
-
# if metric_choice != "None":
|
66 |
-
# metric_choice = metric_choice + "/std"
|
67 |
-
# sort_basis = df[metric_choice].apply(format_csv_numbers)
|
68 |
-
# sorted_indices = sort_basis.argsort()[::-1]
|
69 |
-
# df = df.iloc[sorted_indices]
|
70 |
-
|
71 |
leaderboard_table = gr.components.Dataframe(
|
72 |
value=df,
|
73 |
interactive=False,
|
@@ -81,12 +75,6 @@ def get_dataset_csv_per(
|
|
81 |
df = ORIGINAL_DF_PER[ORIGINAL_DF_PER['Size'].isin(model_size)]
|
82 |
df = df.drop(columns="Size")
|
83 |
|
84 |
-
# if metric_choice != "None":
|
85 |
-
# metric_choice = metric_choice + "/std"
|
86 |
-
# sort_basis = df[metric_choice].apply(format_csv_numbers)
|
87 |
-
# sorted_indices = sort_basis.argsort()[::-1]
|
88 |
-
# df = df.iloc[sorted_indices]
|
89 |
-
|
90 |
leaderboard_table = gr.components.Dataframe(
|
91 |
value=df,
|
92 |
interactive=False,
|
@@ -106,16 +94,6 @@ def get_dataset_csv_sub_gen(
|
|
106 |
subclass_choice_label = ["Model", subclass_choice+"_Accuracy", subclass_choice+"_Precision", subclass_choice+"_Recall"]
|
107 |
df = df[subclass_choice_label]
|
108 |
|
109 |
-
# if metric_choice != "None":
|
110 |
-
# # metric_choice = metric_choice + "/std"
|
111 |
-
# metric_choice = metric_choice.split("_")[0]
|
112 |
-
# metric_choice = subclass_choice + "_" + metric_choice
|
113 |
-
# # sort_basis = df[metric_choice].apply(format_csv_numbers)
|
114 |
-
# sort_basis = df[metric_choice]
|
115 |
-
|
116 |
-
# sorted_indices = sort_basis.argsort()[::-1]
|
117 |
-
# df = df.iloc[sorted_indices]
|
118 |
-
|
119 |
leaderboard_table = gr.components.Dataframe(
|
120 |
value=df,
|
121 |
interactive=False,
|
@@ -135,16 +113,6 @@ def get_dataset_csv_sub_per(
|
|
135 |
subclass_choice_label = ["Model", subclass_choice+"_Accuracy", subclass_choice+"_Precision", subclass_choice+"_Recall"]
|
136 |
df = df[subclass_choice_label]
|
137 |
|
138 |
-
# if metric_choice != "None":
|
139 |
-
# # metric_choice = metric_choice + "/std"
|
140 |
-
# metric_choice = metric_choice.split("_")[0]
|
141 |
-
# metric_choice = subclass_choice + "_" + metric_choice
|
142 |
-
# # sort_basis = df[metric_choice].apply(format_csv_numbers)
|
143 |
-
# sort_basis = df[metric_choice]
|
144 |
-
|
145 |
-
# sorted_indices = sort_basis.argsort()[::-1]
|
146 |
-
# df = df.iloc[sorted_indices]
|
147 |
-
|
148 |
leaderboard_table = gr.components.Dataframe(
|
149 |
value=df,
|
150 |
interactive=False,
|
@@ -197,14 +165,6 @@ with gr.Blocks() as demo:
|
|
197 |
info="Please choose the type to display.",
|
198 |
)
|
199 |
|
200 |
-
# with gr.Column(scale=0.8):
|
201 |
-
# metric_choice = gr.Dropdown(
|
202 |
-
# choices=METRICS,
|
203 |
-
# value="None",
|
204 |
-
# label="Metric",
|
205 |
-
# info="Please choose the metric to display.",
|
206 |
-
# )
|
207 |
-
|
208 |
with gr.Column(scale=10):
|
209 |
model_choice = gr.CheckboxGroup(
|
210 |
choices=CLASSIFICATION["model_size"],
|
@@ -213,40 +173,8 @@ with gr.Blocks() as demo:
|
|
213 |
info="Please choose the model size to display.",
|
214 |
)
|
215 |
|
216 |
-
|
217 |
-
# with gr.Column(scale=0.8):
|
218 |
-
# subclass_choice = gr.Dropdown(
|
219 |
-
# choices=SUBCLASS,
|
220 |
-
# value="Discrimination",
|
221 |
-
# label="Subclass",
|
222 |
-
# info="Please choose the subclass to display.",
|
223 |
-
# )
|
224 |
-
|
225 |
-
|
226 |
-
#π this part is for csv table generatived
|
227 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
228 |
-
|
229 |
-
# with gr.TabItem("π
Overall Generatived", elem_id="od-benchmark-tab-table", id=1):
|
230 |
-
# dataframe = gr.components.Dataframe(
|
231 |
-
# elem_id="leaderboard-table",
|
232 |
-
# )
|
233 |
-
# #π this part is for csv table perplexity
|
234 |
-
# with gr.TabItem("π
Overall Perplexity", elem_id="od-benchmark-tab-table", id=2):
|
235 |
-
# datafram_per = gr.components.Dataframe(
|
236 |
-
# elem_id="leaderboard-table",
|
237 |
-
# )
|
238 |
-
|
239 |
-
# #π this part is for csv subclass table generatived
|
240 |
-
# with gr.TabItem("π
Subclass Generatived", elem_id="od-benchmark-tab-table", id=3):
|
241 |
-
# dataframe_sub_gen = gr.components.Dataframe(
|
242 |
-
# elem_id="leaderboard-table",
|
243 |
-
# )
|
244 |
-
|
245 |
-
# #π this part is for csv subclass table perplexity
|
246 |
-
# with gr.TabItem("π
Subclass Perplexity", elem_id="od-benchmark-tab-table", id=4):
|
247 |
-
# dataframe_sub_per = gr.components.Dataframe(
|
248 |
-
# elem_id="leaderboard-table",
|
249 |
-
# )
|
250 |
# ----------------- modify text -----------------
|
251 |
|
252 |
with gr.TabItem("π
Generation", elem_id="od-benchmark-tab-table", id=6):
|
@@ -269,105 +197,6 @@ with gr.Blocks() as demo:
|
|
269 |
|
270 |
gr.Markdown(f"Last updated on **{_LAST_UPDATED}**", elem_classes="markdown-text")
|
271 |
|
272 |
-
# π this part is for citation
|
273 |
-
# with gr.Row():
|
274 |
-
# with gr.Accordion("π Citation", open=False):
|
275 |
-
# gr.Textbox(
|
276 |
-
# value=_BIBTEX,
|
277 |
-
# lines=7,
|
278 |
-
# label="Copy the BibTeX snippet to cite this source",
|
279 |
-
# elem_id="citation-button",
|
280 |
-
# show_copy_button=True
|
281 |
-
# )
|
282 |
-
|
283 |
-
# this is result based on generative
|
284 |
-
# metric_choice.change(
|
285 |
-
# get_dataset_csv,
|
286 |
-
# inputs=[model_choice, metric_choice],
|
287 |
-
# outputs=dataframe,
|
288 |
-
# )
|
289 |
-
|
290 |
-
# model_choice.change(
|
291 |
-
# get_dataset_csv,
|
292 |
-
# inputs=[model_choice, metric_choice],
|
293 |
-
# outputs=dataframe,
|
294 |
-
# )
|
295 |
-
|
296 |
-
# demo.load(
|
297 |
-
# fn=get_dataset_csv,
|
298 |
-
# inputs=[model_choice, metric_choice],
|
299 |
-
# outputs=dataframe,
|
300 |
-
# )
|
301 |
-
|
302 |
-
# # this is result based on Perplexity
|
303 |
-
# metric_choice.change(
|
304 |
-
# get_dataset_csv_per,
|
305 |
-
# inputs=[model_choice, metric_choice],
|
306 |
-
# outputs=datafram_per,
|
307 |
-
# )
|
308 |
-
|
309 |
-
# model_choice.change(
|
310 |
-
# get_dataset_csv_per,
|
311 |
-
# inputs=[model_choice, metric_choice],
|
312 |
-
# outputs=datafram_per,
|
313 |
-
# )
|
314 |
-
|
315 |
-
# demo.load(
|
316 |
-
# fn=get_dataset_csv_per,
|
317 |
-
# inputs=[model_choice, metric_choice],
|
318 |
-
# outputs=datafram_per,
|
319 |
-
# )
|
320 |
-
|
321 |
-
# this is subclass result generatived
|
322 |
-
# metric_choice.change(
|
323 |
-
# get_dataset_csv_sub_gen,
|
324 |
-
# inputs=[model_choice, metric_choice, subclass_choice],
|
325 |
-
# outputs=dataframe_sub_gen,
|
326 |
-
# )
|
327 |
-
|
328 |
-
# model_choice.change(
|
329 |
-
# get_dataset_csv_sub_gen,
|
330 |
-
# inputs=[model_choice, metric_choice, subclass_choice],
|
331 |
-
# outputs=dataframe_sub_gen,
|
332 |
-
# )
|
333 |
-
|
334 |
-
# subclass_choice.change(
|
335 |
-
# get_dataset_csv_sub_gen,
|
336 |
-
# inputs=[model_choice, metric_choice, subclass_choice],
|
337 |
-
# outputs=dataframe_sub_gen,
|
338 |
-
# )
|
339 |
-
|
340 |
-
# demo.load(
|
341 |
-
# fn=get_dataset_csv_sub_gen,
|
342 |
-
# inputs=[model_choice, metric_choice, subclass_choice],
|
343 |
-
# outputs=dataframe_sub_gen,
|
344 |
-
# )
|
345 |
-
|
346 |
-
# # this is subclass result Perplexity
|
347 |
-
# # metric_choice.change(
|
348 |
-
# # get_dataset_csv_sub_per,
|
349 |
-
# # inputs=[model_choice, metric_choice, subclass_choice],
|
350 |
-
# # outputs=dataframe_sub_per,
|
351 |
-
# # )
|
352 |
-
|
353 |
-
# model_choice.change(
|
354 |
-
# get_dataset_csv_sub_per,
|
355 |
-
# inputs=[model_choice, metric_choice, subclass_choice],
|
356 |
-
# outputs=dataframe_sub_per,
|
357 |
-
# )
|
358 |
-
|
359 |
-
# subclass_choice.change(
|
360 |
-
# get_dataset_csv_sub_per,
|
361 |
-
# inputs=[model_choice, metric_choice, subclass_choice],
|
362 |
-
# outputs=dataframe_sub_per,
|
363 |
-
# )
|
364 |
-
|
365 |
-
# demo.load(
|
366 |
-
# fn=get_dataset_csv_sub_per,
|
367 |
-
# inputs=[model_choice, metric_choice, subclass_choice],
|
368 |
-
# outputs=dataframe_sub_per,
|
369 |
-
# )
|
370 |
-
|
371 |
# --------------------------- all --------------------------------
|
372 |
# this is all result Perplexity
|
373 |
|
@@ -382,18 +211,6 @@ with gr.Blocks() as demo:
|
|
382 |
inputs=[model_choice, main_choice],
|
383 |
outputs=dataframe_all_per,
|
384 |
)
|
385 |
-
|
386 |
-
# metric_choice.change(
|
387 |
-
# get_dataset_classfier_per,
|
388 |
-
# inputs=[model_choice, main_choice],
|
389 |
-
# outputs=dataframe_all_per,
|
390 |
-
# )
|
391 |
-
|
392 |
-
# subclass_choice.change(
|
393 |
-
# get_dataset_classfier_per,
|
394 |
-
# inputs=[model_choice, metric_choice, main_choice],
|
395 |
-
# outputs=dataframe_all_per,
|
396 |
-
# )
|
397 |
|
398 |
demo.load(
|
399 |
fn=get_dataset_classfier_per,
|
@@ -414,18 +231,6 @@ with gr.Blocks() as demo:
|
|
414 |
outputs=dataframe_all_gen,
|
415 |
)
|
416 |
|
417 |
-
# metric_choice.change(
|
418 |
-
# get_dataset_classfier_gen,
|
419 |
-
# inputs=[model_choice, metric_choice, main_choice],
|
420 |
-
# outputs=dataframe_all_gen,
|
421 |
-
# )
|
422 |
-
|
423 |
-
# subclass_choice.change(
|
424 |
-
# get_dataset_classfier_gen,
|
425 |
-
# inputs=[model_choice, metric_choice, main_choice],
|
426 |
-
# outputs=dataframe_all_gen,
|
427 |
-
# )
|
428 |
-
|
429 |
demo.load(
|
430 |
fn=get_dataset_classfier_gen,
|
431 |
inputs=[model_choice, main_choice],
|
|
|
61 |
):
|
62 |
df = ORIGINAL_DF[ORIGINAL_DF['Size'].isin(model_size)]
|
63 |
df = df.drop(columns="Size")
|
64 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
leaderboard_table = gr.components.Dataframe(
|
66 |
value=df,
|
67 |
interactive=False,
|
|
|
75 |
df = ORIGINAL_DF_PER[ORIGINAL_DF_PER['Size'].isin(model_size)]
|
76 |
df = df.drop(columns="Size")
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
leaderboard_table = gr.components.Dataframe(
|
79 |
value=df,
|
80 |
interactive=False,
|
|
|
94 |
subclass_choice_label = ["Model", subclass_choice+"_Accuracy", subclass_choice+"_Precision", subclass_choice+"_Recall"]
|
95 |
df = df[subclass_choice_label]
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
leaderboard_table = gr.components.Dataframe(
|
98 |
value=df,
|
99 |
interactive=False,
|
|
|
113 |
subclass_choice_label = ["Model", subclass_choice+"_Accuracy", subclass_choice+"_Precision", subclass_choice+"_Recall"]
|
114 |
df = df[subclass_choice_label]
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
leaderboard_table = gr.components.Dataframe(
|
117 |
value=df,
|
118 |
interactive=False,
|
|
|
165 |
info="Please choose the type to display.",
|
166 |
)
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
with gr.Column(scale=10):
|
169 |
model_choice = gr.CheckboxGroup(
|
170 |
choices=CLASSIFICATION["model_size"],
|
|
|
173 |
info="Please choose the model size to display.",
|
174 |
)
|
175 |
|
176 |
+
#π this part is for csv table generatived
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
# ----------------- modify text -----------------
|
179 |
|
180 |
with gr.TabItem("π
Generation", elem_id="od-benchmark-tab-table", id=6):
|
|
|
197 |
|
198 |
gr.Markdown(f"Last updated on **{_LAST_UPDATED}**", elem_classes="markdown-text")
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
# --------------------------- all --------------------------------
|
201 |
# this is all result Perplexity
|
202 |
|
|
|
211 |
inputs=[model_choice, main_choice],
|
212 |
outputs=dataframe_all_per,
|
213 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
demo.load(
|
216 |
fn=get_dataset_classfier_per,
|
|
|
231 |
outputs=dataframe_all_gen,
|
232 |
)
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
demo.load(
|
235 |
fn=get_dataset_classfier_gen,
|
236 |
inputs=[model_choice, main_choice],
|