|
import os
|
|
import sys
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import dill
|
|
import pickle
|
|
from sklearn.metrics import r2_score
|
|
from sklearn.model_selection import GridSearchCV
|
|
|
|
from src.exception import CustomException
|
|
|
|
def save_object(file_path, obj):
|
|
try:
|
|
dir_path = os.path.dirname(file_path)
|
|
|
|
os.makedirs(dir_path, exist_ok=True)
|
|
|
|
with open(file_path, "wb") as file_obj:
|
|
pickle.dump(obj, file_obj)
|
|
|
|
except Exception as e:
|
|
raise CustomException(e, sys)
|
|
|
|
def evaluate_models(X_train, y_train,X_test,y_test,models,param):
|
|
try:
|
|
report = {}
|
|
|
|
for i in range(len(list(models))):
|
|
model = list(models.values())[i]
|
|
para=param[list(models.keys())[i]]
|
|
|
|
gs = GridSearchCV(model,para,cv=3)
|
|
gs.fit(X_train,y_train)
|
|
|
|
model.set_params(**gs.best_params_)
|
|
model.fit(X_train,y_train)
|
|
|
|
|
|
|
|
y_train_pred = model.predict(X_train)
|
|
|
|
y_test_pred = model.predict(X_test)
|
|
|
|
train_model_score = r2_score(y_train, y_train_pred)
|
|
|
|
test_model_score = r2_score(y_test, y_test_pred)
|
|
|
|
report[list(models.keys())[i]] = test_model_score
|
|
|
|
return report
|
|
|
|
except Exception as e:
|
|
raise CustomException(e, sys)
|
|
|
|
def load_object(file_path):
|
|
try:
|
|
with open(file_path, "rb") as file_obj:
|
|
return pickle.load(file_obj)
|
|
|
|
except Exception as e:
|
|
raise CustomException(e, sys) |