|
|
|
import os
|
|
import sys
|
|
from ..exception import CustomException
|
|
|
|
from src.logger import logging
|
|
|
|
import pandas as pd
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
from dataclasses import dataclass
|
|
|
|
|
|
from src.components.data_transformation import DataTransformation
|
|
from src.components.data_transformation import DataTransformationConfig
|
|
from src.components.model_trainer import ModelTrainerConfig
|
|
from src.components.model_trainer import ModelTrainer
|
|
|
|
|
|
@dataclass
|
|
class DataIngestionConfig:
|
|
|
|
train_data_path: str = os.path.join('artifacts', "train.csv")
|
|
test_data_path: str = os.path.join('artifacts', "test.csv")
|
|
raw_data_path: str = os.path.join('artifacts', "data.csv")
|
|
|
|
|
|
class DataIngestion:
|
|
def __init__(self):
|
|
|
|
self.ingestion_config = DataIngestionConfig()
|
|
|
|
|
|
def initiate_data_ingestion(self):
|
|
logging.info("Entered the data ingestion method or component")
|
|
try:
|
|
|
|
df = pd.read_csv('notebook/data/stud.csv')
|
|
logging.info('Read the dataset as dataframe')
|
|
|
|
|
|
os.makedirs(os.path.dirname(self.ingestion_config.train_data_path), exist_ok=True)
|
|
|
|
|
|
df.to_csv(self.ingestion_config.raw_data_path, index=False, header=True)
|
|
|
|
logging.info("Train test split initiated")
|
|
|
|
train_set, test_set = train_test_split(df, test_size=0.2, random_state=42)
|
|
|
|
|
|
train_set.to_csv(self.ingestion_config.train_data_path, index=False, header=True)
|
|
test_set.to_csv(self.ingestion_config.test_data_path, index=False, header=True)
|
|
|
|
logging.info("Ingestion of the data is completed")
|
|
|
|
|
|
return (
|
|
self.ingestion_config.train_data_path,
|
|
self.ingestion_config.test_data_path
|
|
)
|
|
except Exception as e:
|
|
raise CustomException(e, sys)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
obj = DataIngestion()
|
|
|
|
train_data, test_data = obj.initiate_data_ingestion()
|
|
|
|
|
|
data_transformation = DataTransformation()
|
|
|
|
train_arr, test_arr, _ = data_transformation.initiate_data_transformation(train_data, test_data)
|
|
|
|
|
|
modeltrainer = ModelTrainer()
|
|
|
|
print(modeltrainer.initiate_model_trainer(train_arr, test_arr))
|
|
|