|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import pandas as pd |
|
from collections.abc import Sequence |
|
from matplotlib.figure import Figure |
|
|
|
|
|
def plot_cluster_counts(labels: Sequence[int]) -> Figure: |
|
""" |
|
Generate a bar chart showing the number of samples in each cluster. |
|
|
|
Args: |
|
labels: Sequence of integer cluster labels. |
|
Returns: |
|
Matplotlib Figure with cluster size distribution. |
|
""" |
|
|
|
counts = pd.Series(labels).value_counts().sort_index() |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(8, 5)) |
|
ax.bar(counts.index.astype(str), counts.values, edgecolor="black") |
|
ax.set_title("Cluster Size Distribution", fontsize=14, fontweight="bold") |
|
ax.set_xlabel("Cluster Label", fontsize=12) |
|
ax.set_ylabel("Number of Samples", fontsize=12) |
|
ax.grid(axis="y", linestyle="--", alpha=0.6) |
|
plt.tight_layout() |
|
return fig |
|
|
|
|
|
def visualize_clusters( |
|
X: np.ndarray, |
|
labels: Sequence[int], |
|
centers: np.ndarray |
|
) -> Figure: |
|
""" |
|
Scatter plot of clustered data with centroids. |
|
|
|
Args: |
|
X: 2D array of shape (n_samples, 2). |
|
labels: Cluster labels for each sample. |
|
centers: 2D array of cluster centroids. |
|
Returns: |
|
Matplotlib Figure with clusters and centroids plotted. |
|
""" |
|
unique_labels = np.unique(labels) |
|
n_clusters = unique_labels.size |
|
|
|
|
|
cmap = plt.get_cmap('tab10') |
|
|
|
fig, ax = plt.subplots(figsize=(8, 6)) |
|
for idx, cluster in enumerate(unique_labels): |
|
mask = labels == cluster |
|
ax.scatter( |
|
X[mask, 0], X[mask, 1], |
|
s=50, |
|
label=f"Cluster {cluster}", |
|
color=cmap(idx), |
|
edgecolor='k', |
|
alpha=0.7 |
|
) |
|
|
|
|
|
ax.scatter( |
|
centers[:, 0], centers[:, 1], |
|
s=200, |
|
marker='X', |
|
c='black', |
|
label='Centroids', |
|
linewidths=2 |
|
) |
|
|
|
ax.set_title("Cluster Visualization", fontsize=14, fontweight="bold") |
|
ax.set_xlabel('Annual Income ($K)', fontsize=14) |
|
ax.set_xlabel('Spending Score', fontsize=14) |
|
ax.legend(title="Clusters", fontsize=10, title_fontsize=12) |
|
ax.grid(True, linestyle="--", alpha=0.6) |
|
plt.tight_layout() |
|
return fig |