LLMpromt-test / app.py
Kims12's picture
Upload 4 files
744eef2 verified
raw
history blame
3.32 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
import random
import logging
# λ‘œκΉ… μ„€μ •
logging.basicConfig(filename='language_model_playground.log', level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s')
# λͺ¨λΈ λͺ©λ‘
MODELS = {
"Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta",
"DeepSeek Coder V2": "deepseek-ai/DeepSeek-Coder-V2-Instruct",
"Meta Llama 3.1 8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Meta-Llama 3.1 70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"Microsoft": "microsoft/Phi-3-mini-4k-instruct",
"Mixtral 8x7B": "mistralai/Mistral-7B-Instruct-v0.3",
"Mixtral Nous-Hermes": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"Cohere Command R+": "CohereForAI/c4ai-command-r-plus",
"Aya-23-35B": "CohereForAI/aya-23-35B"
}
# HuggingFace 토큰 μ„€μ •
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN ν™˜κ²½ λ³€μˆ˜κ°€ μ„€μ •λ˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€.")
def call_hf_api(prompt, reference_text, max_tokens, temperature, top_p, model):
client = InferenceClient(model=model, token=hf_token)
combined_prompt = f"{prompt}\n\nμ°Έκ³  ν…μŠ€νŠΈ:\n{reference_text}"
random_seed = random.randint(0, 1000000)
try:
response = client.text_generation(
combined_prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
seed=random_seed
)
return response
except Exception as e:
logging.error(f"HuggingFace API 호좜 쀑 였λ₯˜ λ°œμƒ: {str(e)}")
return f"응닡 생성 쀑 였λ₯˜ λ°œμƒ: {str(e)}. λ‚˜μ€‘μ— λ‹€μ‹œ μ‹œλ„ν•΄ μ£Όμ„Έμš”."
def generate_response(prompt, reference_text, max_tokens, temperature, top_p, model):
response = call_hf_api(prompt, reference_text, max_tokens, temperature, top_p, MODELS[model])
response_html = f"""
<h3>μƒμ„±λœ 응닡:</h3>
<div style='max-height: 500px; overflow-y: auto; white-space: pre-wrap; word-wrap: break-word;'>
{response}
</div>
"""
return response_html
# Gradio μΈν„°νŽ˜μ΄μŠ€ μ„€μ •
with gr.Blocks() as demo:
gr.Markdown("## μ–Έμ–΄ λͺ¨λΈ ν”„λ‘¬ν”„νŠΈ ν”Œλ ˆμ΄κ·ΈλΌμš΄λ“œ")
with gr.Column():
model_radio = gr.Radio(choices=list(MODELS.keys()), value="Zephyr 7B Beta", label="μ–Έμ–΄ λͺ¨λΈ 선택")
prompt_input = gr.Textbox(label="ν”„λ‘¬ν”„νŠΈ μž…λ ₯", lines=5)
reference_text_input = gr.Textbox(label="μ°Έκ³  ν…μŠ€νŠΈ μž…λ ₯", lines=5)
with gr.Row():
max_tokens_slider = gr.Slider(minimum=0, maximum=5000, value=2000, step=100, label="μ΅œλŒ€ 토큰 수")
temperature_slider = gr.Slider(minimum=0, maximum=1, value=0.75, step=0.05, label="μ˜¨λ„")
top_p_slider = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="Top P")
generate_button = gr.Button("응닡 생성")
response_output = gr.HTML(label="μƒμ„±λœ 응닡")
# λ²„νŠΌ 클릭 μ‹œ 응닡 생성
generate_button.click(
generate_response,
inputs=[prompt_input, reference_text_input, max_tokens_slider, temperature_slider, top_p_slider, model_radio],
outputs=response_output
)
# μΈν„°νŽ˜μ΄μŠ€ μ‹€ν–‰
demo.launch(share=True)