SIH_FORGE / app.py
SUBHROJM's picture
Create app.py
9bbc6a1
raw
history blame
1.48 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load Pretrained Model and Tokenizer
model_name = "text/sentiment-analysis"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Define the Gradio Interface
import easyocr
def image_classifier(img):
model = YOLO('/content/drive/MyDrive/SIH_2023/YOLO/runs/detect/train/weights/best.pt')
res = model.predict(img,conf=0.25)
box = res[0].boxes.xywh[0]
bounding_box = box.cpu().numpy()
x0 = bounding_box[0] - bounding_box[2] / 2
x1 = bounding_box[0] + bounding_box[2] / 2
y0 = bounding_box[1] - bounding_box[3] / 2
y1 = bounding_box[1] + bounding_box[3] / 2
start_point = (int(x0), int(y0))
end_point = (int(x1), int(y1))
cv2.rectangle(img, start_point, end_point, color=(0,255,0), thickness=2)
# Use the easyocr reader for English language
reader = easyocr.Reader(['en'])
# Perform OCR on the input image
result = reader.readtext(img,allowlist="0123456789")
# Extract text and bounding box coordinates
text_and_coordinates = [(entry[1], entry[0]) for entry in result]
return text_and_coordinates
iface = gr.Interface(
fn=predict_sentiment,
inputs="text",
outputs="text",
live=True,
title="Sentiment Analysis",
description="Enter a sentence to predict sentiment.",
)
# Launch the Gradio Interface
iface.launch()