first
Browse files- .gitignore +2 -0
- app.py +141 -0
- requirements.txt +14 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
venv
|
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
|
2 |
+
from compel import Compel, ReturnedEmbeddingsType
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
|
6 |
+
try:
|
7 |
+
import intel_extension_for_pytorch as ipex
|
8 |
+
except:
|
9 |
+
pass
|
10 |
+
|
11 |
+
from PIL import Image
|
12 |
+
import numpy as np
|
13 |
+
import gradio as gr
|
14 |
+
import psutil
|
15 |
+
|
16 |
+
|
17 |
+
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
18 |
+
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
19 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
20 |
+
# check if MPS is available OSX only M1/M2/M3 chips
|
21 |
+
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
22 |
+
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
23 |
+
device = torch.device(
|
24 |
+
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
|
25 |
+
)
|
26 |
+
torch_device = device
|
27 |
+
torch_dtype = torch.float16
|
28 |
+
|
29 |
+
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
30 |
+
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
|
31 |
+
print(f"device: {device}")
|
32 |
+
|
33 |
+
if mps_available:
|
34 |
+
device = torch.device("mps")
|
35 |
+
torch_device = "cpu"
|
36 |
+
torch_dtype = torch.float32
|
37 |
+
|
38 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
39 |
+
|
40 |
+
if SAFETY_CHECKER == "True":
|
41 |
+
pipe = DiffusionPipeline.from_pretrained(model_id)
|
42 |
+
else:
|
43 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, safety_checker=None)
|
44 |
+
|
45 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
46 |
+
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
47 |
+
pipe.unet.to(memory_format=torch.channels_last)
|
48 |
+
|
49 |
+
# check if computer has less than 64GB of RAM using sys or os
|
50 |
+
if psutil.virtual_memory().total < 64 * 1024**3:
|
51 |
+
pipe.enable_attention_slicing()
|
52 |
+
|
53 |
+
if TORCH_COMPILE:
|
54 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
55 |
+
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
56 |
+
|
57 |
+
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
58 |
+
|
59 |
+
# Load LCM LoRA
|
60 |
+
pipe.load_lora_weights(
|
61 |
+
"lcm-sd/lcm-sdxl-lora",
|
62 |
+
weight_name="lcm_sdxl_lora.safetensors",
|
63 |
+
adapter_name="lcm",
|
64 |
+
token=HF_TOKEN,
|
65 |
+
)
|
66 |
+
|
67 |
+
compel_proc = Compel(
|
68 |
+
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
69 |
+
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
70 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
71 |
+
requires_pooled=[False, True],
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
def predict(
|
76 |
+
prompt, guidance, steps, seed=1231231, progress=gr.Progress(track_tqdm=True)
|
77 |
+
):
|
78 |
+
generator = torch.manual_seed(seed)
|
79 |
+
prompt_embeds, pooled_prompt_embeds = compel_proc(prompt)
|
80 |
+
|
81 |
+
results = pipe(
|
82 |
+
prompt_embeds=prompt_embeds,
|
83 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
84 |
+
generator=generator,
|
85 |
+
num_inference_steps=steps,
|
86 |
+
guidance_scale=guidance,
|
87 |
+
width=1024,
|
88 |
+
height=1024,
|
89 |
+
# original_inference_steps=params.lcm_steps,
|
90 |
+
output_type="pil",
|
91 |
+
)
|
92 |
+
nsfw_content_detected = (
|
93 |
+
results.nsfw_content_detected[0]
|
94 |
+
if "nsfw_content_detected" in results
|
95 |
+
else False
|
96 |
+
)
|
97 |
+
if nsfw_content_detected:
|
98 |
+
raise gr.Error("NSFW content detected.")
|
99 |
+
return results.images[0]
|
100 |
+
|
101 |
+
|
102 |
+
css = """
|
103 |
+
#container{
|
104 |
+
margin: 0 auto;
|
105 |
+
max-width: 50rem;
|
106 |
+
}
|
107 |
+
#intro{
|
108 |
+
max-width: 32rem;
|
109 |
+
text-align: center;
|
110 |
+
margin: 0 auto;
|
111 |
+
}
|
112 |
+
"""
|
113 |
+
with gr.Blocks(css=css) as demo:
|
114 |
+
with gr.Column(elem_id="container"):
|
115 |
+
gr.Markdown(
|
116 |
+
"""# Ultra-Fast SDXL with LoRAs borrowed from Latent Consistency Models
|
117 |
+
|
118 |
+
""",
|
119 |
+
elem_id="intro",
|
120 |
+
)
|
121 |
+
with gr.Row():
|
122 |
+
with gr.Row():
|
123 |
+
prompt = gr.Textbox(
|
124 |
+
placeholder="Insert your prompt here", scale=5, container=False
|
125 |
+
)
|
126 |
+
generate_bt = gr.Button("Generate", scale=1)
|
127 |
+
with gr.Accordion("Advanced options", open=False):
|
128 |
+
guidance = gr.Slider(
|
129 |
+
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
|
130 |
+
)
|
131 |
+
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
|
132 |
+
seed = gr.Slider(
|
133 |
+
randomize=True, minimum=0, maximum=12013012031030, label="Seed"
|
134 |
+
)
|
135 |
+
image = gr.Image(type="filepath")
|
136 |
+
|
137 |
+
inputs = [prompt, guidance, steps, seed]
|
138 |
+
generate_bt.click(fn=predict, inputs=inputs, outputs=image)
|
139 |
+
|
140 |
+
demo.queue()
|
141 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# diffusers==0.22.2
|
2 |
+
git+https://github.com/huggingface/diffusers.git@6110d7c95f630479cf01340cc8a8141c1e359f09
|
3 |
+
transformers==4.34.1
|
4 |
+
gradio==4.1.2
|
5 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
6 |
+
torch==2.1.0
|
7 |
+
fastapi==0.104.0
|
8 |
+
uvicorn==0.23.2
|
9 |
+
Pillow==10.1.0
|
10 |
+
accelerate==0.24.0
|
11 |
+
compel==2.0.2
|
12 |
+
controlnet-aux==0.0.7
|
13 |
+
peft==0.6.0
|
14 |
+
bitsandbytes
|