SMD00 commited on
Commit
cd46f6c
1 Parent(s): 199eb45

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +380 -0
app.py ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ import cv2 as cv
4
+
5
+ import os
6
+ import glob
7
+ import time
8
+ import numpy as np
9
+ from PIL import Image
10
+ from pathlib import Path
11
+ from tqdm.notebook import tqdm
12
+ import matplotlib.pyplot as plt
13
+ from skimage.color import rgb2lab, lab2rgb
14
+
15
+ # pip install fastai==2.4
16
+
17
+ import torch
18
+ from torch import nn, optim
19
+ from torchvision import transforms
20
+ from torchvision.utils import make_grid
21
+ from torch.utils.data import Dataset, DataLoader
22
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
+ use_colab = None
24
+
25
+ SIZE = 256
26
+ class ColorizationDataset(Dataset):
27
+ def __init__(self, paths, split='train'):
28
+ if split == 'train':
29
+ self.transforms = transforms.Compose([
30
+ transforms.Resize((SIZE, SIZE), Image.BICUBIC),
31
+ transforms.RandomHorizontalFlip(), # A little data augmentation!
32
+ ])
33
+ elif split == 'val':
34
+ self.transforms = transforms.Resize((SIZE, SIZE), Image.BICUBIC)
35
+
36
+ self.split = split
37
+ self.size = SIZE
38
+ self.paths = paths
39
+
40
+ def __getitem__(self, idx):
41
+ img = Image.open(self.paths[idx]).convert("RGB")
42
+ img = self.transforms(img)
43
+ img = np.array(img)
44
+ img_lab = rgb2lab(img).astype("float32") # Converting RGB to L*a*b
45
+ img_lab = transforms.ToTensor()(img_lab)
46
+ L = img_lab[[0], ...] / 50. - 1. # Between -1 and 1
47
+ ab = img_lab[[1, 2], ...] / 110. # Between -1 and 1
48
+
49
+ return {'L': L, 'ab': ab}
50
+
51
+ def __len__(self):
52
+ return len(self.paths)
53
+
54
+ def make_dataloaders(batch_size=16, n_workers=4, pin_memory=True, **kwargs): # A handy function to make our dataloaders
55
+ dataset = ColorizationDataset(**kwargs)
56
+ dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers,
57
+ pin_memory=pin_memory)
58
+ return dataloader
59
+
60
+ class UnetBlock(nn.Module):
61
+ def __init__(self, nf, ni, submodule=None, input_c=None, dropout=False,
62
+ innermost=False, outermost=False):
63
+ super().__init__()
64
+ self.outermost = outermost
65
+ if input_c is None: input_c = nf
66
+ downconv = nn.Conv2d(input_c, ni, kernel_size=4,
67
+ stride=2, padding=1, bias=False)
68
+ downrelu = nn.LeakyReLU(0.2, True)
69
+ downnorm = nn.BatchNorm2d(ni)
70
+ uprelu = nn.ReLU(True)
71
+ upnorm = nn.BatchNorm2d(nf)
72
+
73
+ if outermost:
74
+ upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
75
+ stride=2, padding=1)
76
+ down = [downconv]
77
+ up = [uprelu, upconv, nn.Tanh()]
78
+ model = down + [submodule] + up
79
+ elif innermost:
80
+ upconv = nn.ConvTranspose2d(ni, nf, kernel_size=4,
81
+ stride=2, padding=1, bias=False)
82
+ down = [downrelu, downconv]
83
+ up = [uprelu, upconv, upnorm]
84
+ model = down + up
85
+ else:
86
+ upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
87
+ stride=2, padding=1, bias=False)
88
+ down = [downrelu, downconv, downnorm]
89
+ up = [uprelu, upconv, upnorm]
90
+ if dropout: up += [nn.Dropout(0.5)]
91
+ model = down + [submodule] + up
92
+ self.model = nn.Sequential(*model)
93
+
94
+ def forward(self, x):
95
+ if self.outermost:
96
+ return self.model(x)
97
+ else:
98
+ return torch.cat([x, self.model(x)], 1)
99
+
100
+ class Unet(nn.Module):
101
+ def __init__(self, input_c=1, output_c=2, n_down=8, num_filters=64):
102
+ super().__init__()
103
+ unet_block = UnetBlock(num_filters * 8, num_filters * 8, innermost=True)
104
+ for _ in range(n_down - 5):
105
+ unet_block = UnetBlock(num_filters * 8, num_filters * 8, submodule=unet_block, dropout=True)
106
+ out_filters = num_filters * 8
107
+ for _ in range(3):
108
+ unet_block = UnetBlock(out_filters // 2, out_filters, submodule=unet_block)
109
+ out_filters //= 2
110
+ self.model = UnetBlock(output_c, out_filters, input_c=input_c, submodule=unet_block, outermost=True)
111
+
112
+ def forward(self, x):
113
+ return self.model(x)
114
+
115
+ class PatchDiscriminator(nn.Module):
116
+ def __init__(self, input_c, num_filters=64, n_down=3):
117
+ super().__init__()
118
+ model = [self.get_layers(input_c, num_filters, norm=False)]
119
+ model += [self.get_layers(num_filters * 2 ** i, num_filters * 2 ** (i + 1), s=1 if i == (n_down-1) else 2)
120
+ for i in range(n_down)] # the 'if' statement is taking care of not using
121
+ # stride of 2 for the last block in this loop
122
+ model += [self.get_layers(num_filters * 2 ** n_down, 1, s=1, norm=False, act=False)] # Make sure to not use normalization or
123
+ # activation for the last layer of the model
124
+ self.model = nn.Sequential(*model)
125
+
126
+ def get_layers(self, ni, nf, k=4, s=2, p=1, norm=True, act=True): # when needing to make some repeatitive blocks of layers,
127
+ layers = [nn.Conv2d(ni, nf, k, s, p, bias=not norm)] # it's always helpful to make a separate method for that purpose
128
+ if norm: layers += [nn.BatchNorm2d(nf)]
129
+ if act: layers += [nn.LeakyReLU(0.2, True)]
130
+ return nn.Sequential(*layers)
131
+
132
+ def forward(self, x):
133
+ return self.model(x)
134
+
135
+ class GANLoss(nn.Module):
136
+ def __init__(self, gan_mode='vanilla', real_label=1.0, fake_label=0.0):
137
+ super().__init__()
138
+ self.register_buffer('real_label', torch.tensor(real_label))
139
+ self.register_buffer('fake_label', torch.tensor(fake_label))
140
+ if gan_mode == 'vanilla':
141
+ self.loss = nn.BCEWithLogitsLoss()
142
+ elif gan_mode == 'lsgan':
143
+ self.loss = nn.MSELoss()
144
+
145
+ def get_labels(self, preds, target_is_real):
146
+ if target_is_real:
147
+ labels = self.real_label
148
+ else:
149
+ labels = self.fake_label
150
+ return labels.expand_as(preds)
151
+
152
+ def __call__(self, preds, target_is_real):
153
+ labels = self.get_labels(preds, target_is_real)
154
+ loss = self.loss(preds, labels)
155
+ return loss
156
+
157
+ def init_weights(net, init='norm', gain=0.02):
158
+
159
+ def init_func(m):
160
+ classname = m.__class__.__name__
161
+ if hasattr(m, 'weight') and 'Conv' in classname:
162
+ if init == 'norm':
163
+ nn.init.normal_(m.weight.data, mean=0.0, std=gain)
164
+ elif init == 'xavier':
165
+ nn.init.xavier_normal_(m.weight.data, gain=gain)
166
+ elif init == 'kaiming':
167
+ nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
168
+
169
+ if hasattr(m, 'bias') and m.bias is not None:
170
+ nn.init.constant_(m.bias.data, 0.0)
171
+ elif 'BatchNorm2d' in classname:
172
+ nn.init.normal_(m.weight.data, 1., gain)
173
+ nn.init.constant_(m.bias.data, 0.)
174
+
175
+ net.apply(init_func)
176
+ print(f"model initialized with {init} initialization")
177
+ return net
178
+
179
+ def init_model(model, device):
180
+ model = model.to(device)
181
+ model = init_weights(model)
182
+ return model
183
+
184
+ class MainModel(nn.Module):
185
+ def __init__(self, net_G=None, lr_G=2e-4, lr_D=2e-4,
186
+ beta1=0.5, beta2=0.999, lambda_L1=100.):
187
+ super().__init__()
188
+
189
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
190
+ self.lambda_L1 = lambda_L1
191
+
192
+ if net_G is None:
193
+ self.net_G = init_model(Unet(input_c=1, output_c=2, n_down=8, num_filters=64), self.device)
194
+ else:
195
+ self.net_G = net_G.to(self.device)
196
+ self.net_D = init_model(PatchDiscriminator(input_c=3, n_down=3, num_filters=64), self.device)
197
+ self.GANcriterion = GANLoss(gan_mode='vanilla').to(self.device)
198
+ self.L1criterion = nn.L1Loss()
199
+ self.opt_G = optim.Adam(self.net_G.parameters(), lr=lr_G, betas=(beta1, beta2))
200
+ self.opt_D = optim.Adam(self.net_D.parameters(), lr=lr_D, betas=(beta1, beta2))
201
+
202
+ def set_requires_grad(self, model, requires_grad=True):
203
+ for p in model.parameters():
204
+ p.requires_grad = requires_grad
205
+
206
+ def setup_input(self, data):
207
+ self.L = data['L'].to(self.device)
208
+ self.ab = data['ab'].to(self.device)
209
+
210
+ def forward(self):
211
+ self.fake_color = self.net_G(self.L)
212
+
213
+ def backward_D(self):
214
+ fake_image = torch.cat([self.L, self.fake_color], dim=1)
215
+ fake_preds = self.net_D(fake_image.detach())
216
+ self.loss_D_fake = self.GANcriterion(fake_preds, False)
217
+ real_image = torch.cat([self.L, self.ab], dim=1)
218
+ real_preds = self.net_D(real_image)
219
+ self.loss_D_real = self.GANcriterion(real_preds, True)
220
+ self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
221
+ self.loss_D.backward()
222
+
223
+ def backward_G(self):
224
+ fake_image = torch.cat([self.L, self.fake_color], dim=1)
225
+ fake_preds = self.net_D(fake_image)
226
+ self.loss_G_GAN = self.GANcriterion(fake_preds, True)
227
+ self.loss_G_L1 = self.L1criterion(self.fake_color, self.ab) * self.lambda_L1
228
+ self.loss_G = self.loss_G_GAN + self.loss_G_L1
229
+ self.loss_G.backward()
230
+
231
+ def optimize(self):
232
+ self.forward()
233
+ self.net_D.train()
234
+ self.set_requires_grad(self.net_D, True)
235
+ self.opt_D.zero_grad()
236
+ self.backward_D()
237
+ self.opt_D.step()
238
+
239
+ self.net_G.train()
240
+ self.set_requires_grad(self.net_D, False)
241
+ self.opt_G.zero_grad()
242
+ self.backward_G()
243
+ self.opt_G.step()
244
+
245
+ class AverageMeter:
246
+ def __init__(self):
247
+ self.reset()
248
+
249
+ def reset(self):
250
+ self.count, self.avg, self.sum = [0.] * 3
251
+
252
+ def update(self, val, count=1):
253
+ self.count += count
254
+ self.sum += count * val
255
+ self.avg = self.sum / self.count
256
+
257
+ def create_loss_meters():
258
+ loss_D_fake = AverageMeter()
259
+ loss_D_real = AverageMeter()
260
+ loss_D = AverageMeter()
261
+ loss_G_GAN = AverageMeter()
262
+ loss_G_L1 = AverageMeter()
263
+ loss_G = AverageMeter()
264
+
265
+ return {'loss_D_fake': loss_D_fake,
266
+ 'loss_D_real': loss_D_real,
267
+ 'loss_D': loss_D,
268
+ 'loss_G_GAN': loss_G_GAN,
269
+ 'loss_G_L1': loss_G_L1,
270
+ 'loss_G': loss_G}
271
+
272
+ def update_losses(model, loss_meter_dict, count):
273
+ for loss_name, loss_meter in loss_meter_dict.items():
274
+ loss = getattr(model, loss_name)
275
+ loss_meter.update(loss.item(), count=count)
276
+
277
+ def lab_to_rgb(L, ab):
278
+ """
279
+ Takes a batch of images
280
+ """
281
+
282
+ L = (L + 1.) * 50.
283
+ ab = ab * 110.
284
+ Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
285
+ rgb_imgs = []
286
+ for img in Lab:
287
+ img_rgb = lab2rgb(img)
288
+ rgb_imgs.append(img_rgb)
289
+ return np.stack(rgb_imgs, axis=0)
290
+
291
+ def visualize(model, data, dims):
292
+ model.net_G.eval()
293
+ with torch.no_grad():
294
+ model.setup_input(data)
295
+ model.forward()
296
+ model.net_G.train()
297
+ fake_color = model.fake_color.detach()
298
+ real_color = model.ab
299
+ L = model.L
300
+ fake_imgs = lab_to_rgb(L, fake_color)
301
+ real_imgs = lab_to_rgb(L, real_color)
302
+ for i in range(1):
303
+ # t_img = transforms.Resize((dims[0], dims[1]))(t_img)
304
+ img = Image.fromarray(np.uint8(fake_imgs[i]))
305
+ img = cv.resize(fake_imgs[i], dsize=(dims[1], dims[0]), interpolation=cv.INTER_CUBIC)
306
+ return img
307
+ # st.text(f"Size of fake image {fake_imgs[i].shape} \n Type of image = {type(fake_imgs[i])}")
308
+ # st.image(img, caption="Output image", use_column_width='auto', clamp=True)
309
+
310
+
311
+ def log_results(loss_meter_dict):
312
+ for loss_name, loss_meter in loss_meter_dict.items():
313
+ print(f"{loss_name}: {loss_meter.avg:.5f}")
314
+
315
+ # pip install fastai==2.4
316
+ from fastai.vision.learner import create_body
317
+ from torchvision.models.resnet import resnet18
318
+ from fastai.vision.models.unet import DynamicUnet
319
+
320
+ def build_res_unet(n_input=1, n_output=2, size=256):
321
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
322
+ body = create_body(resnet18, pretrained=True, n_in=n_input, cut=-2)
323
+ net_G = DynamicUnet(body, n_output, (size, size)).to(device)
324
+ return net_G
325
+
326
+ net_G = build_res_unet(n_input=1, n_output=2, size=256)
327
+ net_G.load_state_dict(torch.load("res18-unet.pt", map_location=device))
328
+ model = MainModel(net_G=net_G)
329
+ model.load_state_dict(torch.load("final_model_weights.pt", map_location=device))
330
+
331
+ class MyDataset(torch.utils.data.Dataset):
332
+ def __init__(self, img_list):
333
+ super(MyDataset, self).__init__()
334
+ self.img_list = img_list
335
+ self.augmentations = transforms.Resize((SIZE, SIZE), Image.BICUBIC)
336
+
337
+
338
+ def __len__(self):
339
+ return len(self.img_list)
340
+
341
+ def __getitem__(self, idx):
342
+ img = self.img_list[idx]
343
+ img = self.augmentations(img)
344
+ img = np.array(img)
345
+ img_lab = rgb2lab(img).astype("float32") # Converting RGB to L*a*b
346
+ img_lab = transforms.ToTensor()(img_lab)
347
+ L = img_lab[[0], ...] / 50. - 1. # Between -1 and 1
348
+ ab = img_lab[[1, 2], ...] / 110.
349
+ return {'L': L, 'ab': ab}
350
+
351
+ def make_dataloaders2(batch_size=16, n_workers=4, pin_memory=True, **kwargs): # A handy function to make our dataloaders
352
+ dataset = MyDataset(**kwargs)
353
+ dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers,
354
+ pin_memory=pin_memory)
355
+ return dataloader
356
+
357
+ def main_func(filepath):
358
+ im = Image.open(filepath)
359
+ size_text=f"Size of uploaded image {im.shape}"
360
+ # st.text(body=f"Size of uploaded image {im.shape}")
361
+ a = im.shape
362
+ # st.image(im, caption="Uploaded Image.", use_column_width='auto')
363
+ test_dl = make_dataloaders2(img_list=[im])
364
+ for data in test_dl:
365
+ model.setup_input(data)
366
+ model.optimize()
367
+ img=visualize(model, data, a)
368
+ return (size_text,img)
369
+
370
+ title = "PicSum"
371
+ description = "Gradio demo for PicSum project. You can give an image as input on the left side and then click on the submit button. The generated text, summary, important sentences and fill in the gaps would be generated on the right side."
372
+ gr.Interface(
373
+ extract,
374
+ [gr.inputs.Image(type="filepath", label="Input"),gr.inputs.CheckboxGroup(choices, type="value", default=['Generate text'], label='Options') ],
375
+ [gr.outputs.Textbox(label="Generated Text"),"image"],
376
+ title=title,
377
+ description=description,
378
+ # examples=[['a.png', ['Generate text']], ['b.png', ['Generate text','Summary','Important Sentences']], ]
379
+ ).launch(enable_queue=True)
380
+