Spaces:
Sleeping
Sleeping
import numpy as np | |
import gradio as gr | |
import pandas as pd | |
def homework01_solution2(question, K, X1, X2): | |
K = int(K) | |
# Verify your solutions by code | |
import numpy as np | |
import pandas as pd | |
X = np.array([[-1,1], | |
[0,1], | |
[0,2], | |
[1,-1], | |
[1,0], | |
[1,2], | |
[2,2], | |
[2,3]]) | |
if question == 'Question 2': | |
y = np.array([1,0,1,1,0,0,1,0]) | |
else: | |
y = np.array([0,1,0,0,1,1,0,1]) | |
train_data = pd.DataFrame(X, columns=['X1', 'X2']) | |
train_data['Label (Y)'] = y | |
from sklearn.neighbors import KNeighborsClassifier | |
#(1) predict class for point (3,3) with K = 3 | |
neigh = KNeighborsClassifier(n_neighbors=K) | |
neigh.fit(X, y) | |
pred = neigh.predict(X) | |
train_data['Predicted Label ('+str(K)+'-NN)'] = pred | |
predicted_label = neigh.predict(np.array([[X1, X2]]))[0] | |
(nb_dist, nb_indice) = neigh.kneighbors(np.array([[X1, X2]]), K) | |
import pandas as pd | |
results = pd.DataFrame(columns=['Rank of closest neighbor', 'Features (X_1,X_2)', 'Label (Y)', 'Distance to query data']) | |
for i in range(K): | |
idx = nb_indice[0][i] | |
fea = X[idx].tolist() | |
fea = '({})'.format(', '.join(map(str, fea))) | |
dist = nb_dist[0][i] | |
label = y[idx] | |
#print(idx, fea, dist, label) | |
# Dictionary to append | |
new_data = {'Rank of closest neighbor': i, 'Features (X_1,X_2)': fea, 'Label (Y)':label , 'Distance to query data': dist} | |
tmp = pd.DataFrame(new_data, index=[0]) | |
# Append dictionary to DataFrame | |
#data = data.append(new_data, ignore_index=True) | |
results = pd.concat([results, tmp], ignore_index=True) | |
results = results.sort_values(by='Rank of closest neighbor') | |
results['Distance to query data'] = results['Distance to query data'].round(3) | |
results | |
#Task 2: Based on predicted labels and actual labels provided in the above table, what's the number of correct predictions? | |
# Initialize a counter for correct predictions | |
correct_predictions = 0 | |
for actual, predicted in zip(y, pred): | |
if actual == predicted: | |
correct_predictions += 1 | |
#Task 3: What's the total number of predictions? | |
total_predictions = len(y) | |
#Task 4: What's the classification accuracy? | |
acc = np.round(correct_predictions/total_predictions,3) | |
#Task 5: What's the classification error? | |
err = 1 - acc | |
return train_data, results, predicted_label, correct_predictions, total_predictions, acc, err | |
### configure inputs | |
set_question = gr.Number(value=7) | |
set_question = gr.Dropdown( | |
["Question 2", | |
"Question 4"], | |
value="Question 2", label="Select question" | |
) | |
set_K = gr.Number(value=7) | |
set_X1 = gr.Number(value=1) | |
set_X2 = gr.Number(value=2) | |
### configure outputs | |
set_output_traindata = gr.Dataframe(type='pandas', label ='Train Dataset') | |
set_output_q1a = gr.Dataframe(type='pandas', label ='Question 2: KNN-Classifier Search') | |
set_output_q1b = gr.Textbox(label ='Question 2: KNN-Classifier Prediction') | |
set_output_q4b = gr.Textbox(label ='Question 4b: Number of correct prediction') | |
set_output_q4c = gr.Textbox(label ='Question 4c: Total number of prediction') | |
set_output_q4d = gr.Textbox(label ='Question 4d: Classfication Accuracy') | |
set_output_q4e = gr.Textbox(label ='Question 4e: Classfication Error') | |
### configure Gradio | |
interface = gr.Interface(fn=homework01_solution2, | |
inputs=[set_question, set_K, set_X1, set_X2], | |
outputs=[set_output_traindata, set_output_q1a, set_output_q1b, set_output_q4b, set_output_q4c, set_output_q4d, set_output_q4e], | |
title="CSCI4750/5750(hw01-PartI): Mathematics for KNN (Question 2 & 4: KNN-Classifier Search)", | |
description= "Click examples below for a quick demo", | |
theme = 'huggingface' | |
) | |
interface.launch(debug=True) |