jiehou's picture
Update app.py
85d23bd
import os
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import pandas as pd
import tarfile
import urllib.request
DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/"
HOUSING_PATH = os.path.join("datasets", "housing")
HOUSING_URL = DOWNLOAD_ROOT + "datasets/housing/housing.tgz"
def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH):
if not os.path.isdir(housing_path):
os.makedirs(housing_path)
tgz_path = os.path.join(housing_path, "housing.tgz")
urllib.request.urlretrieve(housing_url, tgz_path)
housing_tgz = tarfile.open(tgz_path)
housing_tgz.extractall(path=housing_path)
housing_tgz.close()
def load_housing_data(housing_path=HOUSING_PATH):
csv_path = os.path.join(housing_path, "housing.csv")
return pd.read_csv(csv_path)
#1. Download the data
fetch_housing_data()
housing_pd = load_housing_data()
housing_pd.head()
## tentatively drop categorical feature
housing = housing_pd.drop('ocean_proximity', axis=1)
housing
#2. Prepare the Data for Machine Learning Algorithms
## 1. split data to get train and test set
from sklearn.model_selection import train_test_split
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=10)
## 2. clean the missing values
train_set_clean = train_set.dropna(subset=["total_bedrooms"])
train_set_clean
## 2. derive training features and training labels
train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y
train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set
## 4. scale the numeric features in training set
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler() ## define the transformer
scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset
train_features_normalized = scaler.transform(train_features)
train_features_normalized
#3. Training ML model on the Training Set
from sklearn.linear_model import LinearRegression ## import the LinearRegression Function
lin_reg = LinearRegression() ## Initialize the class
lin_reg.fit(train_features_normalized, train_labels) # feed the training data X, and label Y for supervised learning
### visualize the data
def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
print("Saving figure", fig_id, ' to ',path)
if tight_layout:
plt.tight_layout()
plt.savefig(path, format=fig_extension, dpi=resolution)
PROJECT_ROOT_DIR='./'
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images")
os.makedirs(IMAGES_PATH, exist_ok=True)
images_path = os.path.join(PROJECT_ROOT_DIR, "images", "end_to_end_project")
os.makedirs(images_path, exist_ok=True)
DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/"
filename = "california.png"
print("Downloading", filename)
url = DOWNLOAD_ROOT + "images/end_to_end_project/" + filename
urllib.request.urlretrieve(url, os.path.join(images_path, filename))
### written by Jie
def draw_map_customize(longitude,latitude, fig_id='test',fig_extension='png' ):
import matplotlib.image as mpimg
california_img=mpimg.imread(os.path.join(images_path, filename))
ax = housing.plot(kind="scatter", x="longitude", y="latitude", figsize=(10,7),
s=housing['population']/100, label="Population",
c="median_house_value", cmap="jet",
colorbar=False, alpha=0.4)
plt.imshow(california_img, extent=[-124.55, -113.80, 32.45, 42.05], alpha=0.5,
cmap=plt.get_cmap("jet"))
plt.ylabel("Latitude", fontsize=18)
plt.xlabel("Longitude", fontsize=18)
plt.xticks(fontsize=18, rotation=0)
plt.yticks(fontsize=18, rotation=0)
plt.plot(longitude,latitude, "ro", alpha=0.7, marker=r'$\clubsuit$', markersize=30)
plt.annotate("Your location is here", xy=(longitude,latitude), xytext=(longitude+1,latitude+1), fontsize=20,
arrowprops=dict(arrowstyle="->"))
prices = housing["median_house_value"]
tick_values = np.linspace(prices.min(), prices.max(), 11)
cbar = plt.colorbar(ticks=tick_values/prices.max())
cbar.ax.set_yticklabels(["$%dk"%(round(v/1000)) for v in tick_values], fontsize=14)
cbar.set_label('Median House Value', fontsize=16)
plt.legend(fontsize=16)
save_fig(fig_id)
#plt.show()
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
return path
def get_sample_data(num_data):
sample_data = []
for i in range(num_data):
samp = housing.sample(1)
longitude = float(samp['longitude'].values[0])
latitude = float(samp['latitude'].values[0])
housing_median_age = float(samp['housing_median_age'].values[0])
total_rooms = float(samp['total_rooms'].values[0])
total_bedrooms = float(samp['total_bedrooms'].values[0])
population = float(samp['population'].values[0])
households = float(samp['households'].values[0])
median_income = float(samp['median_income'].values[0])
sample_data.append([longitude,latitude,housing_median_age,total_rooms,total_bedrooms,population,households,median_income])
return sample_data
def predict_price(longitude,latitude,housing_median_age,total_rooms,total_bedrooms,population,households,median_income):
#import pickle
#loaded_model = pickle.load(open('KNN_classifier.pickle', 'rb'))
#print(loaded_model)
# initialize data of lists.
data = {'longitude':[float(longitude)],
'latitude':[float(latitude)],
'housing_median_age':[float(housing_median_age)],
'total_rooms':[float(total_rooms)],
'total_bedrooms':[float(total_bedrooms)],
'population':[float(population)],
'households':[float(households)],
'median_income':[float(median_income)],
}
#test_features = pd.DataFrame(data, columns=['longitude', 'latitude', 'housing_median_age', 'total_rooms',
# 'total_bedrooms', 'population', 'households', 'median_income'])
# Create DataFrame
test_features = pd.DataFrame(data)
#test_features = test_features.append(data,ignore_index=True)
test_features = test_features.dropna(subset=["total_bedrooms"])
## 3. scale the numeric features in test set.
## important note: do not apply fit function on the test set, using same scalar from training set
test_features_normalized = scaler.transform(test_features)
test_features_normalized
pred = lin_reg.predict(test_features_normalized)[0]
map_file = draw_map_customize(longitude,latitude, fig_id='test',fig_extension='png' )
return pred,map_file
### configure inputs/outputs
set_longitude = gr.inputs.Slider(-124.350000, -114.310000, step=0.5, default=-120, label = 'Longitude')
set_latitude = gr.inputs.Slider(32, 41, step=0.5, default=33, label = 'Latitude')
set_housing_median_age = gr.inputs.Slider(1, 52, step=1, default=10, label = 'Housing_median_age (Year)')
set_total_rooms = gr.inputs.Slider(1, 40000, step=5, default=10000, label = 'Total_rooms')
set_total_bedrooms = gr.inputs.Slider(1, 6445, step=5, default=5000, label = 'Total_bedrooms')
set_population = gr.inputs.Slider(3, 35682, step=5, default=10, label = 'Population')
set_households = gr.inputs.Slider(1, 6082, step=5, default=10, label = 'Households')
set_median_income = gr.inputs.Slider(0, 15, step=0.5, default=10, label = 'Median_income')
set_label = gr.outputs.Textbox(label="Predicted Housing Prices")
# define output as the single class text
set_out_images = gr.outputs.Image(label="Visualize your location")
### configure gradio, detailed can be found at https://www.gradio.app/docs/#i_slider
interface = gr.Interface(fn=predict_price,
inputs=[set_longitude, set_latitude,set_housing_median_age,set_total_rooms,set_total_bedrooms,set_population,set_households,set_median_income],
outputs=[set_label,set_out_images],
examples_per_page = 2,
examples = get_sample_data(10),
title="CSCI4750/5750 Demo 3: Web Application for Housing Price Prediction",
description= "Click examples below for a quick demo",
theme = 'huggingface',
layout = 'vertical'
)
interface.launch(debug=True)