Avik Rao commited on
Commit
cbde07b
·
1 Parent(s): a736250

Add debug prints

Browse files
Files changed (1) hide show
  1. nlp/nlp.py +5 -1
nlp/nlp.py CHANGED
@@ -7,7 +7,7 @@ import torch
7
  from typing import List
8
  from transformers import AutoTokenizer, AutoModel
9
  from sklearn.metrics.pairwise import cosine_similarity
10
-
11
 
12
  # FUNCTIONS
13
  # create embeddings
@@ -40,19 +40,23 @@ def nearest_doc(doc_list: List[str],
40
 
41
  # MAIN
42
  def get_nearest_tags(user_tags: List[str]):
 
43
  # download pretrained model
44
  tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased",)
45
  model = AutoModel.from_pretrained("bert-base-uncased",
46
  output_hidden_states=True)
47
 
 
48
  # get tag lists from local json file
49
  with open("./nlp/tags.json", "r") as jf:
50
  tags = json.load(jf)
51
 
 
52
  # separate tags by type
53
  user_genre, user_mood, user_instr = user_tags
54
  genres, moods, instrs = tags["genre"], tags["mood"], tags["instrument"]
55
 
 
56
  return (
57
  nearest_doc(genres, user_genre, tokenizer, model),
58
  nearest_doc(moods, user_mood, tokenizer, model),
 
7
  from typing import List
8
  from transformers import AutoTokenizer, AutoModel
9
  from sklearn.metrics.pairwise import cosine_similarity
10
+ import streamlit as st
11
 
12
  # FUNCTIONS
13
  # create embeddings
 
40
 
41
  # MAIN
42
  def get_nearest_tags(user_tags: List[str]):
43
+ st.write("function called")
44
  # download pretrained model
45
  tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased",)
46
  model = AutoModel.from_pretrained("bert-base-uncased",
47
  output_hidden_states=True)
48
 
49
+ st.write("model downloaded")
50
  # get tag lists from local json file
51
  with open("./nlp/tags.json", "r") as jf:
52
  tags = json.load(jf)
53
 
54
+ st.write("json opened")
55
  # separate tags by type
56
  user_genre, user_mood, user_instr = user_tags
57
  genres, moods, instrs = tags["genre"], tags["mood"], tags["instrument"]
58
 
59
+ st.write("waiting on return")
60
  return (
61
  nearest_doc(genres, user_genre, tokenizer, model),
62
  nearest_doc(moods, user_mood, tokenizer, model),