Spaces:
Running
Running
Fazhong Liu
commited on
Commit
·
40bae10
1
Parent(s):
16617b2
init
Browse files- .gitattributes +35 -35
- .gitignore +2 -0
- OIP.jpg +0 -0
- app.py +92 -0
- model/body_pose_deploy.prototxt +2976 -0
- model/hand_pose_deploy.prototxt +1756 -0
- out.jpg +0 -0
- requirements.txt +6 -0
- src/__init__.py +0 -0
- src/__pycache__/__init__.cpython-37.pyc +0 -0
- src/__pycache__/__init__.cpython-38.pyc +0 -0
- src/__pycache__/body.cpython-37.pyc +0 -0
- src/__pycache__/body.cpython-38.pyc +0 -0
- src/__pycache__/hand.cpython-37.pyc +0 -0
- src/__pycache__/hand.cpython-38.pyc +0 -0
- src/__pycache__/model.cpython-37.pyc +0 -0
- src/__pycache__/model.cpython-38.pyc +0 -0
- src/__pycache__/util.cpython-37.pyc +0 -0
- src/__pycache__/util.cpython-38.pyc +0 -0
- src/body.py +218 -0
- src/hand.py +85 -0
- src/hand_model_output_size.json +992 -0
- src/hand_model_outputsize.py +17 -0
- src/model.py +219 -0
- src/util.py +198 -0
- test.png +0 -0
- test_full2.jpg +0 -0
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
# *.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
# *.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
# *.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
# *.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
# *.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
# *.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
# *.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
# *.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
# *.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
# *.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
# *.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
# *.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
# *.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
# *.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
# *.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
# *.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
# *.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
# *.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
# *.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
# *.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
# *.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
# *.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
# *.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
# *.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
# *.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
# saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
# *.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
# *.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
# *.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
# *.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
# *.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
# *.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
# *.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
# *.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
# *tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*.caffemodel
|
2 |
+
*.pth
|
OIP.jpg
ADDED
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import copy
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
from src import model
|
7 |
+
from src import util
|
8 |
+
from src.body import Body
|
9 |
+
from src.hand import Hand
|
10 |
+
|
11 |
+
|
12 |
+
def pose_estimation(test_image):
|
13 |
+
bgr_image_path = './test.png'
|
14 |
+
with open(bgr_image_path, 'wb') as bgr_file:
|
15 |
+
bgr_file.write(test_image)
|
16 |
+
# 加载估计模型
|
17 |
+
body_estimation = Body('model/body_pose_model.pth')
|
18 |
+
hand_estimation = Hand('model/hand_pose_model.pth')
|
19 |
+
|
20 |
+
test_image = bgr_image_path
|
21 |
+
oriImg = cv2.imread(test_image) # B,G,R order
|
22 |
+
|
23 |
+
# oriImg = test_image
|
24 |
+
|
25 |
+
# 姿态估计
|
26 |
+
candidate, subset = body_estimation(oriImg)
|
27 |
+
canvas = copy.deepcopy(oriImg)
|
28 |
+
# 绘制身体姿态
|
29 |
+
canvas = util.draw_bodypose(canvas, candidate, subset)
|
30 |
+
# print(candidate)
|
31 |
+
# print(subset)
|
32 |
+
# detect hand
|
33 |
+
hands_list = util.handDetect(candidate, subset, oriImg)
|
34 |
+
|
35 |
+
all_hand_peaks = []
|
36 |
+
for x, y, w, is_left in hands_list:
|
37 |
+
# cv2.rectangle(canvas, (x, y), (x+w, y+w), (0, 255, 0), 2, lineType=cv2.LINE_AA)
|
38 |
+
# cv2.putText(canvas, 'left' if is_left else 'right', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
39 |
+
|
40 |
+
# if is_left:
|
41 |
+
# plt.imshow(oriImg[y:y+w, x:x+w, :][:, :, [2, 1, 0]])
|
42 |
+
# plt.show()
|
43 |
+
peaks = hand_estimation(oriImg[y:y+w, x:x+w, :])
|
44 |
+
peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x)
|
45 |
+
peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
|
46 |
+
# else:
|
47 |
+
# peaks = hand_estimation(cv2.flip(oriImg[y:y+w, x:x+w, :], 1))
|
48 |
+
# peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], w-peaks[:, 0]-1+x)
|
49 |
+
# peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
|
50 |
+
# print(peaks)
|
51 |
+
all_hand_peaks.append(peaks)
|
52 |
+
|
53 |
+
canvas = util.draw_handpose(canvas, all_hand_peaks)
|
54 |
+
|
55 |
+
plt.imshow(canvas[:, :, [2, 1, 0]])
|
56 |
+
plt.axis('off')
|
57 |
+
plt.savefig('./out.jpg')
|
58 |
+
# plt.show()
|
59 |
+
return './out.jpg'
|
60 |
+
|
61 |
+
# Convert the image path to bytes for Gradio to display
|
62 |
+
def convert_image_to_bytes(image_path):
|
63 |
+
with open(image_path, "rb") as image_file:
|
64 |
+
return image_file.read()
|
65 |
+
|
66 |
+
# Gradio interface
|
67 |
+
with gr.Blocks() as demo:
|
68 |
+
gr.Markdown("# Pose Estimation")
|
69 |
+
with gr.Row():
|
70 |
+
image = gr.File(label="Upload Image", type="binary")
|
71 |
+
output_image = gr.Image(label="Estimation Result")
|
72 |
+
submit_button = gr.Button("Start Estimation")
|
73 |
+
|
74 |
+
# Run pose estimation and display results when the button is clicked
|
75 |
+
submit_button.click(
|
76 |
+
pose_estimation,
|
77 |
+
inputs=[image],
|
78 |
+
outputs=[output_image]
|
79 |
+
)
|
80 |
+
|
81 |
+
# Clear the results
|
82 |
+
clear_button = gr.Button("Clear")
|
83 |
+
def clear_outputs():
|
84 |
+
output_image.clear()
|
85 |
+
clear_button.click(
|
86 |
+
clear_outputs,
|
87 |
+
inputs=[],
|
88 |
+
outputs=[output_image]
|
89 |
+
)
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
demo.launch(debug=True)
|
model/body_pose_deploy.prototxt
ADDED
@@ -0,0 +1,2976 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
input: "image"
|
2 |
+
input_dim: 1
|
3 |
+
input_dim: 3
|
4 |
+
input_dim: 1 # This value will be defined at runtime
|
5 |
+
input_dim: 1 # This value will be defined at runtime
|
6 |
+
layer {
|
7 |
+
name: "conv1_1"
|
8 |
+
type: "Convolution"
|
9 |
+
bottom: "image"
|
10 |
+
top: "conv1_1"
|
11 |
+
param {
|
12 |
+
lr_mult: 1.0
|
13 |
+
decay_mult: 1
|
14 |
+
}
|
15 |
+
param {
|
16 |
+
lr_mult: 2.0
|
17 |
+
decay_mult: 0
|
18 |
+
}
|
19 |
+
convolution_param {
|
20 |
+
num_output: 64
|
21 |
+
pad: 1
|
22 |
+
kernel_size: 3
|
23 |
+
weight_filler {
|
24 |
+
type: "gaussian"
|
25 |
+
std: 0.01
|
26 |
+
}
|
27 |
+
bias_filler {
|
28 |
+
type: "constant"
|
29 |
+
}
|
30 |
+
}
|
31 |
+
}
|
32 |
+
layer {
|
33 |
+
name: "relu1_1"
|
34 |
+
type: "ReLU"
|
35 |
+
bottom: "conv1_1"
|
36 |
+
top: "conv1_1"
|
37 |
+
}
|
38 |
+
layer {
|
39 |
+
name: "conv1_2"
|
40 |
+
type: "Convolution"
|
41 |
+
bottom: "conv1_1"
|
42 |
+
top: "conv1_2"
|
43 |
+
param {
|
44 |
+
lr_mult: 1.0
|
45 |
+
decay_mult: 1
|
46 |
+
}
|
47 |
+
param {
|
48 |
+
lr_mult: 2.0
|
49 |
+
decay_mult: 0
|
50 |
+
}
|
51 |
+
convolution_param {
|
52 |
+
num_output: 64
|
53 |
+
pad: 1
|
54 |
+
kernel_size: 3
|
55 |
+
weight_filler {
|
56 |
+
type: "gaussian"
|
57 |
+
std: 0.01
|
58 |
+
}
|
59 |
+
bias_filler {
|
60 |
+
type: "constant"
|
61 |
+
}
|
62 |
+
}
|
63 |
+
}
|
64 |
+
layer {
|
65 |
+
name: "relu1_2"
|
66 |
+
type: "ReLU"
|
67 |
+
bottom: "conv1_2"
|
68 |
+
top: "conv1_2"
|
69 |
+
}
|
70 |
+
layer {
|
71 |
+
name: "pool1_stage1"
|
72 |
+
type: "Pooling"
|
73 |
+
bottom: "conv1_2"
|
74 |
+
top: "pool1_stage1"
|
75 |
+
pooling_param {
|
76 |
+
pool: MAX
|
77 |
+
kernel_size: 2
|
78 |
+
stride: 2
|
79 |
+
}
|
80 |
+
}
|
81 |
+
layer {
|
82 |
+
name: "conv2_1"
|
83 |
+
type: "Convolution"
|
84 |
+
bottom: "pool1_stage1"
|
85 |
+
top: "conv2_1"
|
86 |
+
param {
|
87 |
+
lr_mult: 1.0
|
88 |
+
decay_mult: 1
|
89 |
+
}
|
90 |
+
param {
|
91 |
+
lr_mult: 2.0
|
92 |
+
decay_mult: 0
|
93 |
+
}
|
94 |
+
convolution_param {
|
95 |
+
num_output: 128
|
96 |
+
pad: 1
|
97 |
+
kernel_size: 3
|
98 |
+
weight_filler {
|
99 |
+
type: "gaussian"
|
100 |
+
std: 0.01
|
101 |
+
}
|
102 |
+
bias_filler {
|
103 |
+
type: "constant"
|
104 |
+
}
|
105 |
+
}
|
106 |
+
}
|
107 |
+
layer {
|
108 |
+
name: "relu2_1"
|
109 |
+
type: "ReLU"
|
110 |
+
bottom: "conv2_1"
|
111 |
+
top: "conv2_1"
|
112 |
+
}
|
113 |
+
layer {
|
114 |
+
name: "conv2_2"
|
115 |
+
type: "Convolution"
|
116 |
+
bottom: "conv2_1"
|
117 |
+
top: "conv2_2"
|
118 |
+
param {
|
119 |
+
lr_mult: 1.0
|
120 |
+
decay_mult: 1
|
121 |
+
}
|
122 |
+
param {
|
123 |
+
lr_mult: 2.0
|
124 |
+
decay_mult: 0
|
125 |
+
}
|
126 |
+
convolution_param {
|
127 |
+
num_output: 128
|
128 |
+
pad: 1
|
129 |
+
kernel_size: 3
|
130 |
+
weight_filler {
|
131 |
+
type: "gaussian"
|
132 |
+
std: 0.01
|
133 |
+
}
|
134 |
+
bias_filler {
|
135 |
+
type: "constant"
|
136 |
+
}
|
137 |
+
}
|
138 |
+
}
|
139 |
+
layer {
|
140 |
+
name: "relu2_2"
|
141 |
+
type: "ReLU"
|
142 |
+
bottom: "conv2_2"
|
143 |
+
top: "conv2_2"
|
144 |
+
}
|
145 |
+
layer {
|
146 |
+
name: "pool2_stage1"
|
147 |
+
type: "Pooling"
|
148 |
+
bottom: "conv2_2"
|
149 |
+
top: "pool2_stage1"
|
150 |
+
pooling_param {
|
151 |
+
pool: MAX
|
152 |
+
kernel_size: 2
|
153 |
+
stride: 2
|
154 |
+
}
|
155 |
+
}
|
156 |
+
layer {
|
157 |
+
name: "conv3_1"
|
158 |
+
type: "Convolution"
|
159 |
+
bottom: "pool2_stage1"
|
160 |
+
top: "conv3_1"
|
161 |
+
param {
|
162 |
+
lr_mult: 1.0
|
163 |
+
decay_mult: 1
|
164 |
+
}
|
165 |
+
param {
|
166 |
+
lr_mult: 2.0
|
167 |
+
decay_mult: 0
|
168 |
+
}
|
169 |
+
convolution_param {
|
170 |
+
num_output: 256
|
171 |
+
pad: 1
|
172 |
+
kernel_size: 3
|
173 |
+
weight_filler {
|
174 |
+
type: "gaussian"
|
175 |
+
std: 0.01
|
176 |
+
}
|
177 |
+
bias_filler {
|
178 |
+
type: "constant"
|
179 |
+
}
|
180 |
+
}
|
181 |
+
}
|
182 |
+
layer {
|
183 |
+
name: "relu3_1"
|
184 |
+
type: "ReLU"
|
185 |
+
bottom: "conv3_1"
|
186 |
+
top: "conv3_1"
|
187 |
+
}
|
188 |
+
layer {
|
189 |
+
name: "conv3_2"
|
190 |
+
type: "Convolution"
|
191 |
+
bottom: "conv3_1"
|
192 |
+
top: "conv3_2"
|
193 |
+
param {
|
194 |
+
lr_mult: 1.0
|
195 |
+
decay_mult: 1
|
196 |
+
}
|
197 |
+
param {
|
198 |
+
lr_mult: 2.0
|
199 |
+
decay_mult: 0
|
200 |
+
}
|
201 |
+
convolution_param {
|
202 |
+
num_output: 256
|
203 |
+
pad: 1
|
204 |
+
kernel_size: 3
|
205 |
+
weight_filler {
|
206 |
+
type: "gaussian"
|
207 |
+
std: 0.01
|
208 |
+
}
|
209 |
+
bias_filler {
|
210 |
+
type: "constant"
|
211 |
+
}
|
212 |
+
}
|
213 |
+
}
|
214 |
+
layer {
|
215 |
+
name: "relu3_2"
|
216 |
+
type: "ReLU"
|
217 |
+
bottom: "conv3_2"
|
218 |
+
top: "conv3_2"
|
219 |
+
}
|
220 |
+
layer {
|
221 |
+
name: "conv3_3"
|
222 |
+
type: "Convolution"
|
223 |
+
bottom: "conv3_2"
|
224 |
+
top: "conv3_3"
|
225 |
+
param {
|
226 |
+
lr_mult: 1.0
|
227 |
+
decay_mult: 1
|
228 |
+
}
|
229 |
+
param {
|
230 |
+
lr_mult: 2.0
|
231 |
+
decay_mult: 0
|
232 |
+
}
|
233 |
+
convolution_param {
|
234 |
+
num_output: 256
|
235 |
+
pad: 1
|
236 |
+
kernel_size: 3
|
237 |
+
weight_filler {
|
238 |
+
type: "gaussian"
|
239 |
+
std: 0.01
|
240 |
+
}
|
241 |
+
bias_filler {
|
242 |
+
type: "constant"
|
243 |
+
}
|
244 |
+
}
|
245 |
+
}
|
246 |
+
layer {
|
247 |
+
name: "relu3_3"
|
248 |
+
type: "ReLU"
|
249 |
+
bottom: "conv3_3"
|
250 |
+
top: "conv3_3"
|
251 |
+
}
|
252 |
+
layer {
|
253 |
+
name: "conv3_4"
|
254 |
+
type: "Convolution"
|
255 |
+
bottom: "conv3_3"
|
256 |
+
top: "conv3_4"
|
257 |
+
param {
|
258 |
+
lr_mult: 1.0
|
259 |
+
decay_mult: 1
|
260 |
+
}
|
261 |
+
param {
|
262 |
+
lr_mult: 2.0
|
263 |
+
decay_mult: 0
|
264 |
+
}
|
265 |
+
convolution_param {
|
266 |
+
num_output: 256
|
267 |
+
pad: 1
|
268 |
+
kernel_size: 3
|
269 |
+
weight_filler {
|
270 |
+
type: "gaussian"
|
271 |
+
std: 0.01
|
272 |
+
}
|
273 |
+
bias_filler {
|
274 |
+
type: "constant"
|
275 |
+
}
|
276 |
+
}
|
277 |
+
}
|
278 |
+
layer {
|
279 |
+
name: "relu3_4"
|
280 |
+
type: "ReLU"
|
281 |
+
bottom: "conv3_4"
|
282 |
+
top: "conv3_4"
|
283 |
+
}
|
284 |
+
layer {
|
285 |
+
name: "pool3_stage1"
|
286 |
+
type: "Pooling"
|
287 |
+
bottom: "conv3_4"
|
288 |
+
top: "pool3_stage1"
|
289 |
+
pooling_param {
|
290 |
+
pool: MAX
|
291 |
+
kernel_size: 2
|
292 |
+
stride: 2
|
293 |
+
}
|
294 |
+
}
|
295 |
+
layer {
|
296 |
+
name: "conv4_1"
|
297 |
+
type: "Convolution"
|
298 |
+
bottom: "pool3_stage1"
|
299 |
+
top: "conv4_1"
|
300 |
+
param {
|
301 |
+
lr_mult: 1.0
|
302 |
+
decay_mult: 1
|
303 |
+
}
|
304 |
+
param {
|
305 |
+
lr_mult: 2.0
|
306 |
+
decay_mult: 0
|
307 |
+
}
|
308 |
+
convolution_param {
|
309 |
+
num_output: 512
|
310 |
+
pad: 1
|
311 |
+
kernel_size: 3
|
312 |
+
weight_filler {
|
313 |
+
type: "gaussian"
|
314 |
+
std: 0.01
|
315 |
+
}
|
316 |
+
bias_filler {
|
317 |
+
type: "constant"
|
318 |
+
}
|
319 |
+
}
|
320 |
+
}
|
321 |
+
layer {
|
322 |
+
name: "relu4_1"
|
323 |
+
type: "ReLU"
|
324 |
+
bottom: "conv4_1"
|
325 |
+
top: "conv4_1"
|
326 |
+
}
|
327 |
+
layer {
|
328 |
+
name: "conv4_2"
|
329 |
+
type: "Convolution"
|
330 |
+
bottom: "conv4_1"
|
331 |
+
top: "conv4_2"
|
332 |
+
param {
|
333 |
+
lr_mult: 1.0
|
334 |
+
decay_mult: 1
|
335 |
+
}
|
336 |
+
param {
|
337 |
+
lr_mult: 2.0
|
338 |
+
decay_mult: 0
|
339 |
+
}
|
340 |
+
convolution_param {
|
341 |
+
num_output: 512
|
342 |
+
pad: 1
|
343 |
+
kernel_size: 3
|
344 |
+
weight_filler {
|
345 |
+
type: "gaussian"
|
346 |
+
std: 0.01
|
347 |
+
}
|
348 |
+
bias_filler {
|
349 |
+
type: "constant"
|
350 |
+
}
|
351 |
+
}
|
352 |
+
}
|
353 |
+
layer {
|
354 |
+
name: "relu4_2"
|
355 |
+
type: "ReLU"
|
356 |
+
bottom: "conv4_2"
|
357 |
+
top: "conv4_2"
|
358 |
+
}
|
359 |
+
layer {
|
360 |
+
name: "conv4_3_CPM"
|
361 |
+
type: "Convolution"
|
362 |
+
bottom: "conv4_2"
|
363 |
+
top: "conv4_3_CPM"
|
364 |
+
param {
|
365 |
+
lr_mult: 1.0
|
366 |
+
decay_mult: 1
|
367 |
+
}
|
368 |
+
param {
|
369 |
+
lr_mult: 2.0
|
370 |
+
decay_mult: 0
|
371 |
+
}
|
372 |
+
convolution_param {
|
373 |
+
num_output: 256
|
374 |
+
pad: 1
|
375 |
+
kernel_size: 3
|
376 |
+
weight_filler {
|
377 |
+
type: "gaussian"
|
378 |
+
std: 0.01
|
379 |
+
}
|
380 |
+
bias_filler {
|
381 |
+
type: "constant"
|
382 |
+
}
|
383 |
+
}
|
384 |
+
}
|
385 |
+
layer {
|
386 |
+
name: "relu4_3_CPM"
|
387 |
+
type: "ReLU"
|
388 |
+
bottom: "conv4_3_CPM"
|
389 |
+
top: "conv4_3_CPM"
|
390 |
+
}
|
391 |
+
layer {
|
392 |
+
name: "conv4_4_CPM"
|
393 |
+
type: "Convolution"
|
394 |
+
bottom: "conv4_3_CPM"
|
395 |
+
top: "conv4_4_CPM"
|
396 |
+
param {
|
397 |
+
lr_mult: 1.0
|
398 |
+
decay_mult: 1
|
399 |
+
}
|
400 |
+
param {
|
401 |
+
lr_mult: 2.0
|
402 |
+
decay_mult: 0
|
403 |
+
}
|
404 |
+
convolution_param {
|
405 |
+
num_output: 128
|
406 |
+
pad: 1
|
407 |
+
kernel_size: 3
|
408 |
+
weight_filler {
|
409 |
+
type: "gaussian"
|
410 |
+
std: 0.01
|
411 |
+
}
|
412 |
+
bias_filler {
|
413 |
+
type: "constant"
|
414 |
+
}
|
415 |
+
}
|
416 |
+
}
|
417 |
+
layer {
|
418 |
+
name: "relu4_4_CPM"
|
419 |
+
type: "ReLU"
|
420 |
+
bottom: "conv4_4_CPM"
|
421 |
+
top: "conv4_4_CPM"
|
422 |
+
}
|
423 |
+
layer {
|
424 |
+
name: "conv5_1_CPM_L1"
|
425 |
+
type: "Convolution"
|
426 |
+
bottom: "conv4_4_CPM"
|
427 |
+
top: "conv5_1_CPM_L1"
|
428 |
+
param {
|
429 |
+
lr_mult: 1.0
|
430 |
+
decay_mult: 1
|
431 |
+
}
|
432 |
+
param {
|
433 |
+
lr_mult: 2.0
|
434 |
+
decay_mult: 0
|
435 |
+
}
|
436 |
+
convolution_param {
|
437 |
+
num_output: 128
|
438 |
+
pad: 1
|
439 |
+
kernel_size: 3
|
440 |
+
weight_filler {
|
441 |
+
type: "gaussian"
|
442 |
+
std: 0.01
|
443 |
+
}
|
444 |
+
bias_filler {
|
445 |
+
type: "constant"
|
446 |
+
}
|
447 |
+
}
|
448 |
+
}
|
449 |
+
layer {
|
450 |
+
name: "relu5_1_CPM_L1"
|
451 |
+
type: "ReLU"
|
452 |
+
bottom: "conv5_1_CPM_L1"
|
453 |
+
top: "conv5_1_CPM_L1"
|
454 |
+
}
|
455 |
+
layer {
|
456 |
+
name: "conv5_1_CPM_L2"
|
457 |
+
type: "Convolution"
|
458 |
+
bottom: "conv4_4_CPM"
|
459 |
+
top: "conv5_1_CPM_L2"
|
460 |
+
param {
|
461 |
+
lr_mult: 1.0
|
462 |
+
decay_mult: 1
|
463 |
+
}
|
464 |
+
param {
|
465 |
+
lr_mult: 2.0
|
466 |
+
decay_mult: 0
|
467 |
+
}
|
468 |
+
convolution_param {
|
469 |
+
num_output: 128
|
470 |
+
pad: 1
|
471 |
+
kernel_size: 3
|
472 |
+
weight_filler {
|
473 |
+
type: "gaussian"
|
474 |
+
std: 0.01
|
475 |
+
}
|
476 |
+
bias_filler {
|
477 |
+
type: "constant"
|
478 |
+
}
|
479 |
+
}
|
480 |
+
}
|
481 |
+
layer {
|
482 |
+
name: "relu5_1_CPM_L2"
|
483 |
+
type: "ReLU"
|
484 |
+
bottom: "conv5_1_CPM_L2"
|
485 |
+
top: "conv5_1_CPM_L2"
|
486 |
+
}
|
487 |
+
layer {
|
488 |
+
name: "conv5_2_CPM_L1"
|
489 |
+
type: "Convolution"
|
490 |
+
bottom: "conv5_1_CPM_L1"
|
491 |
+
top: "conv5_2_CPM_L1"
|
492 |
+
param {
|
493 |
+
lr_mult: 1.0
|
494 |
+
decay_mult: 1
|
495 |
+
}
|
496 |
+
param {
|
497 |
+
lr_mult: 2.0
|
498 |
+
decay_mult: 0
|
499 |
+
}
|
500 |
+
convolution_param {
|
501 |
+
num_output: 128
|
502 |
+
pad: 1
|
503 |
+
kernel_size: 3
|
504 |
+
weight_filler {
|
505 |
+
type: "gaussian"
|
506 |
+
std: 0.01
|
507 |
+
}
|
508 |
+
bias_filler {
|
509 |
+
type: "constant"
|
510 |
+
}
|
511 |
+
}
|
512 |
+
}
|
513 |
+
layer {
|
514 |
+
name: "relu5_2_CPM_L1"
|
515 |
+
type: "ReLU"
|
516 |
+
bottom: "conv5_2_CPM_L1"
|
517 |
+
top: "conv5_2_CPM_L1"
|
518 |
+
}
|
519 |
+
layer {
|
520 |
+
name: "conv5_2_CPM_L2"
|
521 |
+
type: "Convolution"
|
522 |
+
bottom: "conv5_1_CPM_L2"
|
523 |
+
top: "conv5_2_CPM_L2"
|
524 |
+
param {
|
525 |
+
lr_mult: 1.0
|
526 |
+
decay_mult: 1
|
527 |
+
}
|
528 |
+
param {
|
529 |
+
lr_mult: 2.0
|
530 |
+
decay_mult: 0
|
531 |
+
}
|
532 |
+
convolution_param {
|
533 |
+
num_output: 128
|
534 |
+
pad: 1
|
535 |
+
kernel_size: 3
|
536 |
+
weight_filler {
|
537 |
+
type: "gaussian"
|
538 |
+
std: 0.01
|
539 |
+
}
|
540 |
+
bias_filler {
|
541 |
+
type: "constant"
|
542 |
+
}
|
543 |
+
}
|
544 |
+
}
|
545 |
+
layer {
|
546 |
+
name: "relu5_2_CPM_L2"
|
547 |
+
type: "ReLU"
|
548 |
+
bottom: "conv5_2_CPM_L2"
|
549 |
+
top: "conv5_2_CPM_L2"
|
550 |
+
}
|
551 |
+
layer {
|
552 |
+
name: "conv5_3_CPM_L1"
|
553 |
+
type: "Convolution"
|
554 |
+
bottom: "conv5_2_CPM_L1"
|
555 |
+
top: "conv5_3_CPM_L1"
|
556 |
+
param {
|
557 |
+
lr_mult: 1.0
|
558 |
+
decay_mult: 1
|
559 |
+
}
|
560 |
+
param {
|
561 |
+
lr_mult: 2.0
|
562 |
+
decay_mult: 0
|
563 |
+
}
|
564 |
+
convolution_param {
|
565 |
+
num_output: 128
|
566 |
+
pad: 1
|
567 |
+
kernel_size: 3
|
568 |
+
weight_filler {
|
569 |
+
type: "gaussian"
|
570 |
+
std: 0.01
|
571 |
+
}
|
572 |
+
bias_filler {
|
573 |
+
type: "constant"
|
574 |
+
}
|
575 |
+
}
|
576 |
+
}
|
577 |
+
layer {
|
578 |
+
name: "relu5_3_CPM_L1"
|
579 |
+
type: "ReLU"
|
580 |
+
bottom: "conv5_3_CPM_L1"
|
581 |
+
top: "conv5_3_CPM_L1"
|
582 |
+
}
|
583 |
+
layer {
|
584 |
+
name: "conv5_3_CPM_L2"
|
585 |
+
type: "Convolution"
|
586 |
+
bottom: "conv5_2_CPM_L2"
|
587 |
+
top: "conv5_3_CPM_L2"
|
588 |
+
param {
|
589 |
+
lr_mult: 1.0
|
590 |
+
decay_mult: 1
|
591 |
+
}
|
592 |
+
param {
|
593 |
+
lr_mult: 2.0
|
594 |
+
decay_mult: 0
|
595 |
+
}
|
596 |
+
convolution_param {
|
597 |
+
num_output: 128
|
598 |
+
pad: 1
|
599 |
+
kernel_size: 3
|
600 |
+
weight_filler {
|
601 |
+
type: "gaussian"
|
602 |
+
std: 0.01
|
603 |
+
}
|
604 |
+
bias_filler {
|
605 |
+
type: "constant"
|
606 |
+
}
|
607 |
+
}
|
608 |
+
}
|
609 |
+
layer {
|
610 |
+
name: "relu5_3_CPM_L2"
|
611 |
+
type: "ReLU"
|
612 |
+
bottom: "conv5_3_CPM_L2"
|
613 |
+
top: "conv5_3_CPM_L2"
|
614 |
+
}
|
615 |
+
layer {
|
616 |
+
name: "conv5_4_CPM_L1"
|
617 |
+
type: "Convolution"
|
618 |
+
bottom: "conv5_3_CPM_L1"
|
619 |
+
top: "conv5_4_CPM_L1"
|
620 |
+
param {
|
621 |
+
lr_mult: 1.0
|
622 |
+
decay_mult: 1
|
623 |
+
}
|
624 |
+
param {
|
625 |
+
lr_mult: 2.0
|
626 |
+
decay_mult: 0
|
627 |
+
}
|
628 |
+
convolution_param {
|
629 |
+
num_output: 512
|
630 |
+
pad: 0
|
631 |
+
kernel_size: 1
|
632 |
+
weight_filler {
|
633 |
+
type: "gaussian"
|
634 |
+
std: 0.01
|
635 |
+
}
|
636 |
+
bias_filler {
|
637 |
+
type: "constant"
|
638 |
+
}
|
639 |
+
}
|
640 |
+
}
|
641 |
+
layer {
|
642 |
+
name: "relu5_4_CPM_L1"
|
643 |
+
type: "ReLU"
|
644 |
+
bottom: "conv5_4_CPM_L1"
|
645 |
+
top: "conv5_4_CPM_L1"
|
646 |
+
}
|
647 |
+
layer {
|
648 |
+
name: "conv5_4_CPM_L2"
|
649 |
+
type: "Convolution"
|
650 |
+
bottom: "conv5_3_CPM_L2"
|
651 |
+
top: "conv5_4_CPM_L2"
|
652 |
+
param {
|
653 |
+
lr_mult: 1.0
|
654 |
+
decay_mult: 1
|
655 |
+
}
|
656 |
+
param {
|
657 |
+
lr_mult: 2.0
|
658 |
+
decay_mult: 0
|
659 |
+
}
|
660 |
+
convolution_param {
|
661 |
+
num_output: 512
|
662 |
+
pad: 0
|
663 |
+
kernel_size: 1
|
664 |
+
weight_filler {
|
665 |
+
type: "gaussian"
|
666 |
+
std: 0.01
|
667 |
+
}
|
668 |
+
bias_filler {
|
669 |
+
type: "constant"
|
670 |
+
}
|
671 |
+
}
|
672 |
+
}
|
673 |
+
layer {
|
674 |
+
name: "relu5_4_CPM_L2"
|
675 |
+
type: "ReLU"
|
676 |
+
bottom: "conv5_4_CPM_L2"
|
677 |
+
top: "conv5_4_CPM_L2"
|
678 |
+
}
|
679 |
+
layer {
|
680 |
+
name: "conv5_5_CPM_L1"
|
681 |
+
type: "Convolution"
|
682 |
+
bottom: "conv5_4_CPM_L1"
|
683 |
+
top: "conv5_5_CPM_L1"
|
684 |
+
param {
|
685 |
+
lr_mult: 1.0
|
686 |
+
decay_mult: 1
|
687 |
+
}
|
688 |
+
param {
|
689 |
+
lr_mult: 2.0
|
690 |
+
decay_mult: 0
|
691 |
+
}
|
692 |
+
convolution_param {
|
693 |
+
num_output: 38
|
694 |
+
pad: 0
|
695 |
+
kernel_size: 1
|
696 |
+
weight_filler {
|
697 |
+
type: "gaussian"
|
698 |
+
std: 0.01
|
699 |
+
}
|
700 |
+
bias_filler {
|
701 |
+
type: "constant"
|
702 |
+
}
|
703 |
+
}
|
704 |
+
}
|
705 |
+
layer {
|
706 |
+
name: "conv5_5_CPM_L2"
|
707 |
+
type: "Convolution"
|
708 |
+
bottom: "conv5_4_CPM_L2"
|
709 |
+
top: "conv5_5_CPM_L2"
|
710 |
+
param {
|
711 |
+
lr_mult: 1.0
|
712 |
+
decay_mult: 1
|
713 |
+
}
|
714 |
+
param {
|
715 |
+
lr_mult: 2.0
|
716 |
+
decay_mult: 0
|
717 |
+
}
|
718 |
+
convolution_param {
|
719 |
+
num_output: 19
|
720 |
+
pad: 0
|
721 |
+
kernel_size: 1
|
722 |
+
weight_filler {
|
723 |
+
type: "gaussian"
|
724 |
+
std: 0.01
|
725 |
+
}
|
726 |
+
bias_filler {
|
727 |
+
type: "constant"
|
728 |
+
}
|
729 |
+
}
|
730 |
+
}
|
731 |
+
layer {
|
732 |
+
name: "concat_stage2"
|
733 |
+
type: "Concat"
|
734 |
+
bottom: "conv5_5_CPM_L1"
|
735 |
+
bottom: "conv5_5_CPM_L2"
|
736 |
+
bottom: "conv4_4_CPM"
|
737 |
+
top: "concat_stage2"
|
738 |
+
concat_param {
|
739 |
+
axis: 1
|
740 |
+
}
|
741 |
+
}
|
742 |
+
layer {
|
743 |
+
name: "Mconv1_stage2_L1"
|
744 |
+
type: "Convolution"
|
745 |
+
bottom: "concat_stage2"
|
746 |
+
top: "Mconv1_stage2_L1"
|
747 |
+
param {
|
748 |
+
lr_mult: 4.0
|
749 |
+
decay_mult: 1
|
750 |
+
}
|
751 |
+
param {
|
752 |
+
lr_mult: 8.0
|
753 |
+
decay_mult: 0
|
754 |
+
}
|
755 |
+
convolution_param {
|
756 |
+
num_output: 128
|
757 |
+
pad: 3
|
758 |
+
kernel_size: 7
|
759 |
+
weight_filler {
|
760 |
+
type: "gaussian"
|
761 |
+
std: 0.01
|
762 |
+
}
|
763 |
+
bias_filler {
|
764 |
+
type: "constant"
|
765 |
+
}
|
766 |
+
}
|
767 |
+
}
|
768 |
+
layer {
|
769 |
+
name: "Mrelu1_stage2_L1"
|
770 |
+
type: "ReLU"
|
771 |
+
bottom: "Mconv1_stage2_L1"
|
772 |
+
top: "Mconv1_stage2_L1"
|
773 |
+
}
|
774 |
+
layer {
|
775 |
+
name: "Mconv1_stage2_L2"
|
776 |
+
type: "Convolution"
|
777 |
+
bottom: "concat_stage2"
|
778 |
+
top: "Mconv1_stage2_L2"
|
779 |
+
param {
|
780 |
+
lr_mult: 4.0
|
781 |
+
decay_mult: 1
|
782 |
+
}
|
783 |
+
param {
|
784 |
+
lr_mult: 8.0
|
785 |
+
decay_mult: 0
|
786 |
+
}
|
787 |
+
convolution_param {
|
788 |
+
num_output: 128
|
789 |
+
pad: 3
|
790 |
+
kernel_size: 7
|
791 |
+
weight_filler {
|
792 |
+
type: "gaussian"
|
793 |
+
std: 0.01
|
794 |
+
}
|
795 |
+
bias_filler {
|
796 |
+
type: "constant"
|
797 |
+
}
|
798 |
+
}
|
799 |
+
}
|
800 |
+
layer {
|
801 |
+
name: "Mrelu1_stage2_L2"
|
802 |
+
type: "ReLU"
|
803 |
+
bottom: "Mconv1_stage2_L2"
|
804 |
+
top: "Mconv1_stage2_L2"
|
805 |
+
}
|
806 |
+
layer {
|
807 |
+
name: "Mconv2_stage2_L1"
|
808 |
+
type: "Convolution"
|
809 |
+
bottom: "Mconv1_stage2_L1"
|
810 |
+
top: "Mconv2_stage2_L1"
|
811 |
+
param {
|
812 |
+
lr_mult: 4.0
|
813 |
+
decay_mult: 1
|
814 |
+
}
|
815 |
+
param {
|
816 |
+
lr_mult: 8.0
|
817 |
+
decay_mult: 0
|
818 |
+
}
|
819 |
+
convolution_param {
|
820 |
+
num_output: 128
|
821 |
+
pad: 3
|
822 |
+
kernel_size: 7
|
823 |
+
weight_filler {
|
824 |
+
type: "gaussian"
|
825 |
+
std: 0.01
|
826 |
+
}
|
827 |
+
bias_filler {
|
828 |
+
type: "constant"
|
829 |
+
}
|
830 |
+
}
|
831 |
+
}
|
832 |
+
layer {
|
833 |
+
name: "Mrelu2_stage2_L1"
|
834 |
+
type: "ReLU"
|
835 |
+
bottom: "Mconv2_stage2_L1"
|
836 |
+
top: "Mconv2_stage2_L1"
|
837 |
+
}
|
838 |
+
layer {
|
839 |
+
name: "Mconv2_stage2_L2"
|
840 |
+
type: "Convolution"
|
841 |
+
bottom: "Mconv1_stage2_L2"
|
842 |
+
top: "Mconv2_stage2_L2"
|
843 |
+
param {
|
844 |
+
lr_mult: 4.0
|
845 |
+
decay_mult: 1
|
846 |
+
}
|
847 |
+
param {
|
848 |
+
lr_mult: 8.0
|
849 |
+
decay_mult: 0
|
850 |
+
}
|
851 |
+
convolution_param {
|
852 |
+
num_output: 128
|
853 |
+
pad: 3
|
854 |
+
kernel_size: 7
|
855 |
+
weight_filler {
|
856 |
+
type: "gaussian"
|
857 |
+
std: 0.01
|
858 |
+
}
|
859 |
+
bias_filler {
|
860 |
+
type: "constant"
|
861 |
+
}
|
862 |
+
}
|
863 |
+
}
|
864 |
+
layer {
|
865 |
+
name: "Mrelu2_stage2_L2"
|
866 |
+
type: "ReLU"
|
867 |
+
bottom: "Mconv2_stage2_L2"
|
868 |
+
top: "Mconv2_stage2_L2"
|
869 |
+
}
|
870 |
+
layer {
|
871 |
+
name: "Mconv3_stage2_L1"
|
872 |
+
type: "Convolution"
|
873 |
+
bottom: "Mconv2_stage2_L1"
|
874 |
+
top: "Mconv3_stage2_L1"
|
875 |
+
param {
|
876 |
+
lr_mult: 4.0
|
877 |
+
decay_mult: 1
|
878 |
+
}
|
879 |
+
param {
|
880 |
+
lr_mult: 8.0
|
881 |
+
decay_mult: 0
|
882 |
+
}
|
883 |
+
convolution_param {
|
884 |
+
num_output: 128
|
885 |
+
pad: 3
|
886 |
+
kernel_size: 7
|
887 |
+
weight_filler {
|
888 |
+
type: "gaussian"
|
889 |
+
std: 0.01
|
890 |
+
}
|
891 |
+
bias_filler {
|
892 |
+
type: "constant"
|
893 |
+
}
|
894 |
+
}
|
895 |
+
}
|
896 |
+
layer {
|
897 |
+
name: "Mrelu3_stage2_L1"
|
898 |
+
type: "ReLU"
|
899 |
+
bottom: "Mconv3_stage2_L1"
|
900 |
+
top: "Mconv3_stage2_L1"
|
901 |
+
}
|
902 |
+
layer {
|
903 |
+
name: "Mconv3_stage2_L2"
|
904 |
+
type: "Convolution"
|
905 |
+
bottom: "Mconv2_stage2_L2"
|
906 |
+
top: "Mconv3_stage2_L2"
|
907 |
+
param {
|
908 |
+
lr_mult: 4.0
|
909 |
+
decay_mult: 1
|
910 |
+
}
|
911 |
+
param {
|
912 |
+
lr_mult: 8.0
|
913 |
+
decay_mult: 0
|
914 |
+
}
|
915 |
+
convolution_param {
|
916 |
+
num_output: 128
|
917 |
+
pad: 3
|
918 |
+
kernel_size: 7
|
919 |
+
weight_filler {
|
920 |
+
type: "gaussian"
|
921 |
+
std: 0.01
|
922 |
+
}
|
923 |
+
bias_filler {
|
924 |
+
type: "constant"
|
925 |
+
}
|
926 |
+
}
|
927 |
+
}
|
928 |
+
layer {
|
929 |
+
name: "Mrelu3_stage2_L2"
|
930 |
+
type: "ReLU"
|
931 |
+
bottom: "Mconv3_stage2_L2"
|
932 |
+
top: "Mconv3_stage2_L2"
|
933 |
+
}
|
934 |
+
layer {
|
935 |
+
name: "Mconv4_stage2_L1"
|
936 |
+
type: "Convolution"
|
937 |
+
bottom: "Mconv3_stage2_L1"
|
938 |
+
top: "Mconv4_stage2_L1"
|
939 |
+
param {
|
940 |
+
lr_mult: 4.0
|
941 |
+
decay_mult: 1
|
942 |
+
}
|
943 |
+
param {
|
944 |
+
lr_mult: 8.0
|
945 |
+
decay_mult: 0
|
946 |
+
}
|
947 |
+
convolution_param {
|
948 |
+
num_output: 128
|
949 |
+
pad: 3
|
950 |
+
kernel_size: 7
|
951 |
+
weight_filler {
|
952 |
+
type: "gaussian"
|
953 |
+
std: 0.01
|
954 |
+
}
|
955 |
+
bias_filler {
|
956 |
+
type: "constant"
|
957 |
+
}
|
958 |
+
}
|
959 |
+
}
|
960 |
+
layer {
|
961 |
+
name: "Mrelu4_stage2_L1"
|
962 |
+
type: "ReLU"
|
963 |
+
bottom: "Mconv4_stage2_L1"
|
964 |
+
top: "Mconv4_stage2_L1"
|
965 |
+
}
|
966 |
+
layer {
|
967 |
+
name: "Mconv4_stage2_L2"
|
968 |
+
type: "Convolution"
|
969 |
+
bottom: "Mconv3_stage2_L2"
|
970 |
+
top: "Mconv4_stage2_L2"
|
971 |
+
param {
|
972 |
+
lr_mult: 4.0
|
973 |
+
decay_mult: 1
|
974 |
+
}
|
975 |
+
param {
|
976 |
+
lr_mult: 8.0
|
977 |
+
decay_mult: 0
|
978 |
+
}
|
979 |
+
convolution_param {
|
980 |
+
num_output: 128
|
981 |
+
pad: 3
|
982 |
+
kernel_size: 7
|
983 |
+
weight_filler {
|
984 |
+
type: "gaussian"
|
985 |
+
std: 0.01
|
986 |
+
}
|
987 |
+
bias_filler {
|
988 |
+
type: "constant"
|
989 |
+
}
|
990 |
+
}
|
991 |
+
}
|
992 |
+
layer {
|
993 |
+
name: "Mrelu4_stage2_L2"
|
994 |
+
type: "ReLU"
|
995 |
+
bottom: "Mconv4_stage2_L2"
|
996 |
+
top: "Mconv4_stage2_L2"
|
997 |
+
}
|
998 |
+
layer {
|
999 |
+
name: "Mconv5_stage2_L1"
|
1000 |
+
type: "Convolution"
|
1001 |
+
bottom: "Mconv4_stage2_L1"
|
1002 |
+
top: "Mconv5_stage2_L1"
|
1003 |
+
param {
|
1004 |
+
lr_mult: 4.0
|
1005 |
+
decay_mult: 1
|
1006 |
+
}
|
1007 |
+
param {
|
1008 |
+
lr_mult: 8.0
|
1009 |
+
decay_mult: 0
|
1010 |
+
}
|
1011 |
+
convolution_param {
|
1012 |
+
num_output: 128
|
1013 |
+
pad: 3
|
1014 |
+
kernel_size: 7
|
1015 |
+
weight_filler {
|
1016 |
+
type: "gaussian"
|
1017 |
+
std: 0.01
|
1018 |
+
}
|
1019 |
+
bias_filler {
|
1020 |
+
type: "constant"
|
1021 |
+
}
|
1022 |
+
}
|
1023 |
+
}
|
1024 |
+
layer {
|
1025 |
+
name: "Mrelu5_stage2_L1"
|
1026 |
+
type: "ReLU"
|
1027 |
+
bottom: "Mconv5_stage2_L1"
|
1028 |
+
top: "Mconv5_stage2_L1"
|
1029 |
+
}
|
1030 |
+
layer {
|
1031 |
+
name: "Mconv5_stage2_L2"
|
1032 |
+
type: "Convolution"
|
1033 |
+
bottom: "Mconv4_stage2_L2"
|
1034 |
+
top: "Mconv5_stage2_L2"
|
1035 |
+
param {
|
1036 |
+
lr_mult: 4.0
|
1037 |
+
decay_mult: 1
|
1038 |
+
}
|
1039 |
+
param {
|
1040 |
+
lr_mult: 8.0
|
1041 |
+
decay_mult: 0
|
1042 |
+
}
|
1043 |
+
convolution_param {
|
1044 |
+
num_output: 128
|
1045 |
+
pad: 3
|
1046 |
+
kernel_size: 7
|
1047 |
+
weight_filler {
|
1048 |
+
type: "gaussian"
|
1049 |
+
std: 0.01
|
1050 |
+
}
|
1051 |
+
bias_filler {
|
1052 |
+
type: "constant"
|
1053 |
+
}
|
1054 |
+
}
|
1055 |
+
}
|
1056 |
+
layer {
|
1057 |
+
name: "Mrelu5_stage2_L2"
|
1058 |
+
type: "ReLU"
|
1059 |
+
bottom: "Mconv5_stage2_L2"
|
1060 |
+
top: "Mconv5_stage2_L2"
|
1061 |
+
}
|
1062 |
+
layer {
|
1063 |
+
name: "Mconv6_stage2_L1"
|
1064 |
+
type: "Convolution"
|
1065 |
+
bottom: "Mconv5_stage2_L1"
|
1066 |
+
top: "Mconv6_stage2_L1"
|
1067 |
+
param {
|
1068 |
+
lr_mult: 4.0
|
1069 |
+
decay_mult: 1
|
1070 |
+
}
|
1071 |
+
param {
|
1072 |
+
lr_mult: 8.0
|
1073 |
+
decay_mult: 0
|
1074 |
+
}
|
1075 |
+
convolution_param {
|
1076 |
+
num_output: 128
|
1077 |
+
pad: 0
|
1078 |
+
kernel_size: 1
|
1079 |
+
weight_filler {
|
1080 |
+
type: "gaussian"
|
1081 |
+
std: 0.01
|
1082 |
+
}
|
1083 |
+
bias_filler {
|
1084 |
+
type: "constant"
|
1085 |
+
}
|
1086 |
+
}
|
1087 |
+
}
|
1088 |
+
layer {
|
1089 |
+
name: "Mrelu6_stage2_L1"
|
1090 |
+
type: "ReLU"
|
1091 |
+
bottom: "Mconv6_stage2_L1"
|
1092 |
+
top: "Mconv6_stage2_L1"
|
1093 |
+
}
|
1094 |
+
layer {
|
1095 |
+
name: "Mconv6_stage2_L2"
|
1096 |
+
type: "Convolution"
|
1097 |
+
bottom: "Mconv5_stage2_L2"
|
1098 |
+
top: "Mconv6_stage2_L2"
|
1099 |
+
param {
|
1100 |
+
lr_mult: 4.0
|
1101 |
+
decay_mult: 1
|
1102 |
+
}
|
1103 |
+
param {
|
1104 |
+
lr_mult: 8.0
|
1105 |
+
decay_mult: 0
|
1106 |
+
}
|
1107 |
+
convolution_param {
|
1108 |
+
num_output: 128
|
1109 |
+
pad: 0
|
1110 |
+
kernel_size: 1
|
1111 |
+
weight_filler {
|
1112 |
+
type: "gaussian"
|
1113 |
+
std: 0.01
|
1114 |
+
}
|
1115 |
+
bias_filler {
|
1116 |
+
type: "constant"
|
1117 |
+
}
|
1118 |
+
}
|
1119 |
+
}
|
1120 |
+
layer {
|
1121 |
+
name: "Mrelu6_stage2_L2"
|
1122 |
+
type: "ReLU"
|
1123 |
+
bottom: "Mconv6_stage2_L2"
|
1124 |
+
top: "Mconv6_stage2_L2"
|
1125 |
+
}
|
1126 |
+
layer {
|
1127 |
+
name: "Mconv7_stage2_L1"
|
1128 |
+
type: "Convolution"
|
1129 |
+
bottom: "Mconv6_stage2_L1"
|
1130 |
+
top: "Mconv7_stage2_L1"
|
1131 |
+
param {
|
1132 |
+
lr_mult: 4.0
|
1133 |
+
decay_mult: 1
|
1134 |
+
}
|
1135 |
+
param {
|
1136 |
+
lr_mult: 8.0
|
1137 |
+
decay_mult: 0
|
1138 |
+
}
|
1139 |
+
convolution_param {
|
1140 |
+
num_output: 38
|
1141 |
+
pad: 0
|
1142 |
+
kernel_size: 1
|
1143 |
+
weight_filler {
|
1144 |
+
type: "gaussian"
|
1145 |
+
std: 0.01
|
1146 |
+
}
|
1147 |
+
bias_filler {
|
1148 |
+
type: "constant"
|
1149 |
+
}
|
1150 |
+
}
|
1151 |
+
}
|
1152 |
+
layer {
|
1153 |
+
name: "Mconv7_stage2_L2"
|
1154 |
+
type: "Convolution"
|
1155 |
+
bottom: "Mconv6_stage2_L2"
|
1156 |
+
top: "Mconv7_stage2_L2"
|
1157 |
+
param {
|
1158 |
+
lr_mult: 4.0
|
1159 |
+
decay_mult: 1
|
1160 |
+
}
|
1161 |
+
param {
|
1162 |
+
lr_mult: 8.0
|
1163 |
+
decay_mult: 0
|
1164 |
+
}
|
1165 |
+
convolution_param {
|
1166 |
+
num_output: 19
|
1167 |
+
pad: 0
|
1168 |
+
kernel_size: 1
|
1169 |
+
weight_filler {
|
1170 |
+
type: "gaussian"
|
1171 |
+
std: 0.01
|
1172 |
+
}
|
1173 |
+
bias_filler {
|
1174 |
+
type: "constant"
|
1175 |
+
}
|
1176 |
+
}
|
1177 |
+
}
|
1178 |
+
layer {
|
1179 |
+
name: "concat_stage3"
|
1180 |
+
type: "Concat"
|
1181 |
+
bottom: "Mconv7_stage2_L1"
|
1182 |
+
bottom: "Mconv7_stage2_L2"
|
1183 |
+
bottom: "conv4_4_CPM"
|
1184 |
+
top: "concat_stage3"
|
1185 |
+
concat_param {
|
1186 |
+
axis: 1
|
1187 |
+
}
|
1188 |
+
}
|
1189 |
+
layer {
|
1190 |
+
name: "Mconv1_stage3_L1"
|
1191 |
+
type: "Convolution"
|
1192 |
+
bottom: "concat_stage3"
|
1193 |
+
top: "Mconv1_stage3_L1"
|
1194 |
+
param {
|
1195 |
+
lr_mult: 4.0
|
1196 |
+
decay_mult: 1
|
1197 |
+
}
|
1198 |
+
param {
|
1199 |
+
lr_mult: 8.0
|
1200 |
+
decay_mult: 0
|
1201 |
+
}
|
1202 |
+
convolution_param {
|
1203 |
+
num_output: 128
|
1204 |
+
pad: 3
|
1205 |
+
kernel_size: 7
|
1206 |
+
weight_filler {
|
1207 |
+
type: "gaussian"
|
1208 |
+
std: 0.01
|
1209 |
+
}
|
1210 |
+
bias_filler {
|
1211 |
+
type: "constant"
|
1212 |
+
}
|
1213 |
+
}
|
1214 |
+
}
|
1215 |
+
layer {
|
1216 |
+
name: "Mrelu1_stage3_L1"
|
1217 |
+
type: "ReLU"
|
1218 |
+
bottom: "Mconv1_stage3_L1"
|
1219 |
+
top: "Mconv1_stage3_L1"
|
1220 |
+
}
|
1221 |
+
layer {
|
1222 |
+
name: "Mconv1_stage3_L2"
|
1223 |
+
type: "Convolution"
|
1224 |
+
bottom: "concat_stage3"
|
1225 |
+
top: "Mconv1_stage3_L2"
|
1226 |
+
param {
|
1227 |
+
lr_mult: 4.0
|
1228 |
+
decay_mult: 1
|
1229 |
+
}
|
1230 |
+
param {
|
1231 |
+
lr_mult: 8.0
|
1232 |
+
decay_mult: 0
|
1233 |
+
}
|
1234 |
+
convolution_param {
|
1235 |
+
num_output: 128
|
1236 |
+
pad: 3
|
1237 |
+
kernel_size: 7
|
1238 |
+
weight_filler {
|
1239 |
+
type: "gaussian"
|
1240 |
+
std: 0.01
|
1241 |
+
}
|
1242 |
+
bias_filler {
|
1243 |
+
type: "constant"
|
1244 |
+
}
|
1245 |
+
}
|
1246 |
+
}
|
1247 |
+
layer {
|
1248 |
+
name: "Mrelu1_stage3_L2"
|
1249 |
+
type: "ReLU"
|
1250 |
+
bottom: "Mconv1_stage3_L2"
|
1251 |
+
top: "Mconv1_stage3_L2"
|
1252 |
+
}
|
1253 |
+
layer {
|
1254 |
+
name: "Mconv2_stage3_L1"
|
1255 |
+
type: "Convolution"
|
1256 |
+
bottom: "Mconv1_stage3_L1"
|
1257 |
+
top: "Mconv2_stage3_L1"
|
1258 |
+
param {
|
1259 |
+
lr_mult: 4.0
|
1260 |
+
decay_mult: 1
|
1261 |
+
}
|
1262 |
+
param {
|
1263 |
+
lr_mult: 8.0
|
1264 |
+
decay_mult: 0
|
1265 |
+
}
|
1266 |
+
convolution_param {
|
1267 |
+
num_output: 128
|
1268 |
+
pad: 3
|
1269 |
+
kernel_size: 7
|
1270 |
+
weight_filler {
|
1271 |
+
type: "gaussian"
|
1272 |
+
std: 0.01
|
1273 |
+
}
|
1274 |
+
bias_filler {
|
1275 |
+
type: "constant"
|
1276 |
+
}
|
1277 |
+
}
|
1278 |
+
}
|
1279 |
+
layer {
|
1280 |
+
name: "Mrelu2_stage3_L1"
|
1281 |
+
type: "ReLU"
|
1282 |
+
bottom: "Mconv2_stage3_L1"
|
1283 |
+
top: "Mconv2_stage3_L1"
|
1284 |
+
}
|
1285 |
+
layer {
|
1286 |
+
name: "Mconv2_stage3_L2"
|
1287 |
+
type: "Convolution"
|
1288 |
+
bottom: "Mconv1_stage3_L2"
|
1289 |
+
top: "Mconv2_stage3_L2"
|
1290 |
+
param {
|
1291 |
+
lr_mult: 4.0
|
1292 |
+
decay_mult: 1
|
1293 |
+
}
|
1294 |
+
param {
|
1295 |
+
lr_mult: 8.0
|
1296 |
+
decay_mult: 0
|
1297 |
+
}
|
1298 |
+
convolution_param {
|
1299 |
+
num_output: 128
|
1300 |
+
pad: 3
|
1301 |
+
kernel_size: 7
|
1302 |
+
weight_filler {
|
1303 |
+
type: "gaussian"
|
1304 |
+
std: 0.01
|
1305 |
+
}
|
1306 |
+
bias_filler {
|
1307 |
+
type: "constant"
|
1308 |
+
}
|
1309 |
+
}
|
1310 |
+
}
|
1311 |
+
layer {
|
1312 |
+
name: "Mrelu2_stage3_L2"
|
1313 |
+
type: "ReLU"
|
1314 |
+
bottom: "Mconv2_stage3_L2"
|
1315 |
+
top: "Mconv2_stage3_L2"
|
1316 |
+
}
|
1317 |
+
layer {
|
1318 |
+
name: "Mconv3_stage3_L1"
|
1319 |
+
type: "Convolution"
|
1320 |
+
bottom: "Mconv2_stage3_L1"
|
1321 |
+
top: "Mconv3_stage3_L1"
|
1322 |
+
param {
|
1323 |
+
lr_mult: 4.0
|
1324 |
+
decay_mult: 1
|
1325 |
+
}
|
1326 |
+
param {
|
1327 |
+
lr_mult: 8.0
|
1328 |
+
decay_mult: 0
|
1329 |
+
}
|
1330 |
+
convolution_param {
|
1331 |
+
num_output: 128
|
1332 |
+
pad: 3
|
1333 |
+
kernel_size: 7
|
1334 |
+
weight_filler {
|
1335 |
+
type: "gaussian"
|
1336 |
+
std: 0.01
|
1337 |
+
}
|
1338 |
+
bias_filler {
|
1339 |
+
type: "constant"
|
1340 |
+
}
|
1341 |
+
}
|
1342 |
+
}
|
1343 |
+
layer {
|
1344 |
+
name: "Mrelu3_stage3_L1"
|
1345 |
+
type: "ReLU"
|
1346 |
+
bottom: "Mconv3_stage3_L1"
|
1347 |
+
top: "Mconv3_stage3_L1"
|
1348 |
+
}
|
1349 |
+
layer {
|
1350 |
+
name: "Mconv3_stage3_L2"
|
1351 |
+
type: "Convolution"
|
1352 |
+
bottom: "Mconv2_stage3_L2"
|
1353 |
+
top: "Mconv3_stage3_L2"
|
1354 |
+
param {
|
1355 |
+
lr_mult: 4.0
|
1356 |
+
decay_mult: 1
|
1357 |
+
}
|
1358 |
+
param {
|
1359 |
+
lr_mult: 8.0
|
1360 |
+
decay_mult: 0
|
1361 |
+
}
|
1362 |
+
convolution_param {
|
1363 |
+
num_output: 128
|
1364 |
+
pad: 3
|
1365 |
+
kernel_size: 7
|
1366 |
+
weight_filler {
|
1367 |
+
type: "gaussian"
|
1368 |
+
std: 0.01
|
1369 |
+
}
|
1370 |
+
bias_filler {
|
1371 |
+
type: "constant"
|
1372 |
+
}
|
1373 |
+
}
|
1374 |
+
}
|
1375 |
+
layer {
|
1376 |
+
name: "Mrelu3_stage3_L2"
|
1377 |
+
type: "ReLU"
|
1378 |
+
bottom: "Mconv3_stage3_L2"
|
1379 |
+
top: "Mconv3_stage3_L2"
|
1380 |
+
}
|
1381 |
+
layer {
|
1382 |
+
name: "Mconv4_stage3_L1"
|
1383 |
+
type: "Convolution"
|
1384 |
+
bottom: "Mconv3_stage3_L1"
|
1385 |
+
top: "Mconv4_stage3_L1"
|
1386 |
+
param {
|
1387 |
+
lr_mult: 4.0
|
1388 |
+
decay_mult: 1
|
1389 |
+
}
|
1390 |
+
param {
|
1391 |
+
lr_mult: 8.0
|
1392 |
+
decay_mult: 0
|
1393 |
+
}
|
1394 |
+
convolution_param {
|
1395 |
+
num_output: 128
|
1396 |
+
pad: 3
|
1397 |
+
kernel_size: 7
|
1398 |
+
weight_filler {
|
1399 |
+
type: "gaussian"
|
1400 |
+
std: 0.01
|
1401 |
+
}
|
1402 |
+
bias_filler {
|
1403 |
+
type: "constant"
|
1404 |
+
}
|
1405 |
+
}
|
1406 |
+
}
|
1407 |
+
layer {
|
1408 |
+
name: "Mrelu4_stage3_L1"
|
1409 |
+
type: "ReLU"
|
1410 |
+
bottom: "Mconv4_stage3_L1"
|
1411 |
+
top: "Mconv4_stage3_L1"
|
1412 |
+
}
|
1413 |
+
layer {
|
1414 |
+
name: "Mconv4_stage3_L2"
|
1415 |
+
type: "Convolution"
|
1416 |
+
bottom: "Mconv3_stage3_L2"
|
1417 |
+
top: "Mconv4_stage3_L2"
|
1418 |
+
param {
|
1419 |
+
lr_mult: 4.0
|
1420 |
+
decay_mult: 1
|
1421 |
+
}
|
1422 |
+
param {
|
1423 |
+
lr_mult: 8.0
|
1424 |
+
decay_mult: 0
|
1425 |
+
}
|
1426 |
+
convolution_param {
|
1427 |
+
num_output: 128
|
1428 |
+
pad: 3
|
1429 |
+
kernel_size: 7
|
1430 |
+
weight_filler {
|
1431 |
+
type: "gaussian"
|
1432 |
+
std: 0.01
|
1433 |
+
}
|
1434 |
+
bias_filler {
|
1435 |
+
type: "constant"
|
1436 |
+
}
|
1437 |
+
}
|
1438 |
+
}
|
1439 |
+
layer {
|
1440 |
+
name: "Mrelu4_stage3_L2"
|
1441 |
+
type: "ReLU"
|
1442 |
+
bottom: "Mconv4_stage3_L2"
|
1443 |
+
top: "Mconv4_stage3_L2"
|
1444 |
+
}
|
1445 |
+
layer {
|
1446 |
+
name: "Mconv5_stage3_L1"
|
1447 |
+
type: "Convolution"
|
1448 |
+
bottom: "Mconv4_stage3_L1"
|
1449 |
+
top: "Mconv5_stage3_L1"
|
1450 |
+
param {
|
1451 |
+
lr_mult: 4.0
|
1452 |
+
decay_mult: 1
|
1453 |
+
}
|
1454 |
+
param {
|
1455 |
+
lr_mult: 8.0
|
1456 |
+
decay_mult: 0
|
1457 |
+
}
|
1458 |
+
convolution_param {
|
1459 |
+
num_output: 128
|
1460 |
+
pad: 3
|
1461 |
+
kernel_size: 7
|
1462 |
+
weight_filler {
|
1463 |
+
type: "gaussian"
|
1464 |
+
std: 0.01
|
1465 |
+
}
|
1466 |
+
bias_filler {
|
1467 |
+
type: "constant"
|
1468 |
+
}
|
1469 |
+
}
|
1470 |
+
}
|
1471 |
+
layer {
|
1472 |
+
name: "Mrelu5_stage3_L1"
|
1473 |
+
type: "ReLU"
|
1474 |
+
bottom: "Mconv5_stage3_L1"
|
1475 |
+
top: "Mconv5_stage3_L1"
|
1476 |
+
}
|
1477 |
+
layer {
|
1478 |
+
name: "Mconv5_stage3_L2"
|
1479 |
+
type: "Convolution"
|
1480 |
+
bottom: "Mconv4_stage3_L2"
|
1481 |
+
top: "Mconv5_stage3_L2"
|
1482 |
+
param {
|
1483 |
+
lr_mult: 4.0
|
1484 |
+
decay_mult: 1
|
1485 |
+
}
|
1486 |
+
param {
|
1487 |
+
lr_mult: 8.0
|
1488 |
+
decay_mult: 0
|
1489 |
+
}
|
1490 |
+
convolution_param {
|
1491 |
+
num_output: 128
|
1492 |
+
pad: 3
|
1493 |
+
kernel_size: 7
|
1494 |
+
weight_filler {
|
1495 |
+
type: "gaussian"
|
1496 |
+
std: 0.01
|
1497 |
+
}
|
1498 |
+
bias_filler {
|
1499 |
+
type: "constant"
|
1500 |
+
}
|
1501 |
+
}
|
1502 |
+
}
|
1503 |
+
layer {
|
1504 |
+
name: "Mrelu5_stage3_L2"
|
1505 |
+
type: "ReLU"
|
1506 |
+
bottom: "Mconv5_stage3_L2"
|
1507 |
+
top: "Mconv5_stage3_L2"
|
1508 |
+
}
|
1509 |
+
layer {
|
1510 |
+
name: "Mconv6_stage3_L1"
|
1511 |
+
type: "Convolution"
|
1512 |
+
bottom: "Mconv5_stage3_L1"
|
1513 |
+
top: "Mconv6_stage3_L1"
|
1514 |
+
param {
|
1515 |
+
lr_mult: 4.0
|
1516 |
+
decay_mult: 1
|
1517 |
+
}
|
1518 |
+
param {
|
1519 |
+
lr_mult: 8.0
|
1520 |
+
decay_mult: 0
|
1521 |
+
}
|
1522 |
+
convolution_param {
|
1523 |
+
num_output: 128
|
1524 |
+
pad: 0
|
1525 |
+
kernel_size: 1
|
1526 |
+
weight_filler {
|
1527 |
+
type: "gaussian"
|
1528 |
+
std: 0.01
|
1529 |
+
}
|
1530 |
+
bias_filler {
|
1531 |
+
type: "constant"
|
1532 |
+
}
|
1533 |
+
}
|
1534 |
+
}
|
1535 |
+
layer {
|
1536 |
+
name: "Mrelu6_stage3_L1"
|
1537 |
+
type: "ReLU"
|
1538 |
+
bottom: "Mconv6_stage3_L1"
|
1539 |
+
top: "Mconv6_stage3_L1"
|
1540 |
+
}
|
1541 |
+
layer {
|
1542 |
+
name: "Mconv6_stage3_L2"
|
1543 |
+
type: "Convolution"
|
1544 |
+
bottom: "Mconv5_stage3_L2"
|
1545 |
+
top: "Mconv6_stage3_L2"
|
1546 |
+
param {
|
1547 |
+
lr_mult: 4.0
|
1548 |
+
decay_mult: 1
|
1549 |
+
}
|
1550 |
+
param {
|
1551 |
+
lr_mult: 8.0
|
1552 |
+
decay_mult: 0
|
1553 |
+
}
|
1554 |
+
convolution_param {
|
1555 |
+
num_output: 128
|
1556 |
+
pad: 0
|
1557 |
+
kernel_size: 1
|
1558 |
+
weight_filler {
|
1559 |
+
type: "gaussian"
|
1560 |
+
std: 0.01
|
1561 |
+
}
|
1562 |
+
bias_filler {
|
1563 |
+
type: "constant"
|
1564 |
+
}
|
1565 |
+
}
|
1566 |
+
}
|
1567 |
+
layer {
|
1568 |
+
name: "Mrelu6_stage3_L2"
|
1569 |
+
type: "ReLU"
|
1570 |
+
bottom: "Mconv6_stage3_L2"
|
1571 |
+
top: "Mconv6_stage3_L2"
|
1572 |
+
}
|
1573 |
+
layer {
|
1574 |
+
name: "Mconv7_stage3_L1"
|
1575 |
+
type: "Convolution"
|
1576 |
+
bottom: "Mconv6_stage3_L1"
|
1577 |
+
top: "Mconv7_stage3_L1"
|
1578 |
+
param {
|
1579 |
+
lr_mult: 4.0
|
1580 |
+
decay_mult: 1
|
1581 |
+
}
|
1582 |
+
param {
|
1583 |
+
lr_mult: 8.0
|
1584 |
+
decay_mult: 0
|
1585 |
+
}
|
1586 |
+
convolution_param {
|
1587 |
+
num_output: 38
|
1588 |
+
pad: 0
|
1589 |
+
kernel_size: 1
|
1590 |
+
weight_filler {
|
1591 |
+
type: "gaussian"
|
1592 |
+
std: 0.01
|
1593 |
+
}
|
1594 |
+
bias_filler {
|
1595 |
+
type: "constant"
|
1596 |
+
}
|
1597 |
+
}
|
1598 |
+
}
|
1599 |
+
layer {
|
1600 |
+
name: "Mconv7_stage3_L2"
|
1601 |
+
type: "Convolution"
|
1602 |
+
bottom: "Mconv6_stage3_L2"
|
1603 |
+
top: "Mconv7_stage3_L2"
|
1604 |
+
param {
|
1605 |
+
lr_mult: 4.0
|
1606 |
+
decay_mult: 1
|
1607 |
+
}
|
1608 |
+
param {
|
1609 |
+
lr_mult: 8.0
|
1610 |
+
decay_mult: 0
|
1611 |
+
}
|
1612 |
+
convolution_param {
|
1613 |
+
num_output: 19
|
1614 |
+
pad: 0
|
1615 |
+
kernel_size: 1
|
1616 |
+
weight_filler {
|
1617 |
+
type: "gaussian"
|
1618 |
+
std: 0.01
|
1619 |
+
}
|
1620 |
+
bias_filler {
|
1621 |
+
type: "constant"
|
1622 |
+
}
|
1623 |
+
}
|
1624 |
+
}
|
1625 |
+
layer {
|
1626 |
+
name: "concat_stage4"
|
1627 |
+
type: "Concat"
|
1628 |
+
bottom: "Mconv7_stage3_L1"
|
1629 |
+
bottom: "Mconv7_stage3_L2"
|
1630 |
+
bottom: "conv4_4_CPM"
|
1631 |
+
top: "concat_stage4"
|
1632 |
+
concat_param {
|
1633 |
+
axis: 1
|
1634 |
+
}
|
1635 |
+
}
|
1636 |
+
layer {
|
1637 |
+
name: "Mconv1_stage4_L1"
|
1638 |
+
type: "Convolution"
|
1639 |
+
bottom: "concat_stage4"
|
1640 |
+
top: "Mconv1_stage4_L1"
|
1641 |
+
param {
|
1642 |
+
lr_mult: 4.0
|
1643 |
+
decay_mult: 1
|
1644 |
+
}
|
1645 |
+
param {
|
1646 |
+
lr_mult: 8.0
|
1647 |
+
decay_mult: 0
|
1648 |
+
}
|
1649 |
+
convolution_param {
|
1650 |
+
num_output: 128
|
1651 |
+
pad: 3
|
1652 |
+
kernel_size: 7
|
1653 |
+
weight_filler {
|
1654 |
+
type: "gaussian"
|
1655 |
+
std: 0.01
|
1656 |
+
}
|
1657 |
+
bias_filler {
|
1658 |
+
type: "constant"
|
1659 |
+
}
|
1660 |
+
}
|
1661 |
+
}
|
1662 |
+
layer {
|
1663 |
+
name: "Mrelu1_stage4_L1"
|
1664 |
+
type: "ReLU"
|
1665 |
+
bottom: "Mconv1_stage4_L1"
|
1666 |
+
top: "Mconv1_stage4_L1"
|
1667 |
+
}
|
1668 |
+
layer {
|
1669 |
+
name: "Mconv1_stage4_L2"
|
1670 |
+
type: "Convolution"
|
1671 |
+
bottom: "concat_stage4"
|
1672 |
+
top: "Mconv1_stage4_L2"
|
1673 |
+
param {
|
1674 |
+
lr_mult: 4.0
|
1675 |
+
decay_mult: 1
|
1676 |
+
}
|
1677 |
+
param {
|
1678 |
+
lr_mult: 8.0
|
1679 |
+
decay_mult: 0
|
1680 |
+
}
|
1681 |
+
convolution_param {
|
1682 |
+
num_output: 128
|
1683 |
+
pad: 3
|
1684 |
+
kernel_size: 7
|
1685 |
+
weight_filler {
|
1686 |
+
type: "gaussian"
|
1687 |
+
std: 0.01
|
1688 |
+
}
|
1689 |
+
bias_filler {
|
1690 |
+
type: "constant"
|
1691 |
+
}
|
1692 |
+
}
|
1693 |
+
}
|
1694 |
+
layer {
|
1695 |
+
name: "Mrelu1_stage4_L2"
|
1696 |
+
type: "ReLU"
|
1697 |
+
bottom: "Mconv1_stage4_L2"
|
1698 |
+
top: "Mconv1_stage4_L2"
|
1699 |
+
}
|
1700 |
+
layer {
|
1701 |
+
name: "Mconv2_stage4_L1"
|
1702 |
+
type: "Convolution"
|
1703 |
+
bottom: "Mconv1_stage4_L1"
|
1704 |
+
top: "Mconv2_stage4_L1"
|
1705 |
+
param {
|
1706 |
+
lr_mult: 4.0
|
1707 |
+
decay_mult: 1
|
1708 |
+
}
|
1709 |
+
param {
|
1710 |
+
lr_mult: 8.0
|
1711 |
+
decay_mult: 0
|
1712 |
+
}
|
1713 |
+
convolution_param {
|
1714 |
+
num_output: 128
|
1715 |
+
pad: 3
|
1716 |
+
kernel_size: 7
|
1717 |
+
weight_filler {
|
1718 |
+
type: "gaussian"
|
1719 |
+
std: 0.01
|
1720 |
+
}
|
1721 |
+
bias_filler {
|
1722 |
+
type: "constant"
|
1723 |
+
}
|
1724 |
+
}
|
1725 |
+
}
|
1726 |
+
layer {
|
1727 |
+
name: "Mrelu2_stage4_L1"
|
1728 |
+
type: "ReLU"
|
1729 |
+
bottom: "Mconv2_stage4_L1"
|
1730 |
+
top: "Mconv2_stage4_L1"
|
1731 |
+
}
|
1732 |
+
layer {
|
1733 |
+
name: "Mconv2_stage4_L2"
|
1734 |
+
type: "Convolution"
|
1735 |
+
bottom: "Mconv1_stage4_L2"
|
1736 |
+
top: "Mconv2_stage4_L2"
|
1737 |
+
param {
|
1738 |
+
lr_mult: 4.0
|
1739 |
+
decay_mult: 1
|
1740 |
+
}
|
1741 |
+
param {
|
1742 |
+
lr_mult: 8.0
|
1743 |
+
decay_mult: 0
|
1744 |
+
}
|
1745 |
+
convolution_param {
|
1746 |
+
num_output: 128
|
1747 |
+
pad: 3
|
1748 |
+
kernel_size: 7
|
1749 |
+
weight_filler {
|
1750 |
+
type: "gaussian"
|
1751 |
+
std: 0.01
|
1752 |
+
}
|
1753 |
+
bias_filler {
|
1754 |
+
type: "constant"
|
1755 |
+
}
|
1756 |
+
}
|
1757 |
+
}
|
1758 |
+
layer {
|
1759 |
+
name: "Mrelu2_stage4_L2"
|
1760 |
+
type: "ReLU"
|
1761 |
+
bottom: "Mconv2_stage4_L2"
|
1762 |
+
top: "Mconv2_stage4_L2"
|
1763 |
+
}
|
1764 |
+
layer {
|
1765 |
+
name: "Mconv3_stage4_L1"
|
1766 |
+
type: "Convolution"
|
1767 |
+
bottom: "Mconv2_stage4_L1"
|
1768 |
+
top: "Mconv3_stage4_L1"
|
1769 |
+
param {
|
1770 |
+
lr_mult: 4.0
|
1771 |
+
decay_mult: 1
|
1772 |
+
}
|
1773 |
+
param {
|
1774 |
+
lr_mult: 8.0
|
1775 |
+
decay_mult: 0
|
1776 |
+
}
|
1777 |
+
convolution_param {
|
1778 |
+
num_output: 128
|
1779 |
+
pad: 3
|
1780 |
+
kernel_size: 7
|
1781 |
+
weight_filler {
|
1782 |
+
type: "gaussian"
|
1783 |
+
std: 0.01
|
1784 |
+
}
|
1785 |
+
bias_filler {
|
1786 |
+
type: "constant"
|
1787 |
+
}
|
1788 |
+
}
|
1789 |
+
}
|
1790 |
+
layer {
|
1791 |
+
name: "Mrelu3_stage4_L1"
|
1792 |
+
type: "ReLU"
|
1793 |
+
bottom: "Mconv3_stage4_L1"
|
1794 |
+
top: "Mconv3_stage4_L1"
|
1795 |
+
}
|
1796 |
+
layer {
|
1797 |
+
name: "Mconv3_stage4_L2"
|
1798 |
+
type: "Convolution"
|
1799 |
+
bottom: "Mconv2_stage4_L2"
|
1800 |
+
top: "Mconv3_stage4_L2"
|
1801 |
+
param {
|
1802 |
+
lr_mult: 4.0
|
1803 |
+
decay_mult: 1
|
1804 |
+
}
|
1805 |
+
param {
|
1806 |
+
lr_mult: 8.0
|
1807 |
+
decay_mult: 0
|
1808 |
+
}
|
1809 |
+
convolution_param {
|
1810 |
+
num_output: 128
|
1811 |
+
pad: 3
|
1812 |
+
kernel_size: 7
|
1813 |
+
weight_filler {
|
1814 |
+
type: "gaussian"
|
1815 |
+
std: 0.01
|
1816 |
+
}
|
1817 |
+
bias_filler {
|
1818 |
+
type: "constant"
|
1819 |
+
}
|
1820 |
+
}
|
1821 |
+
}
|
1822 |
+
layer {
|
1823 |
+
name: "Mrelu3_stage4_L2"
|
1824 |
+
type: "ReLU"
|
1825 |
+
bottom: "Mconv3_stage4_L2"
|
1826 |
+
top: "Mconv3_stage4_L2"
|
1827 |
+
}
|
1828 |
+
layer {
|
1829 |
+
name: "Mconv4_stage4_L1"
|
1830 |
+
type: "Convolution"
|
1831 |
+
bottom: "Mconv3_stage4_L1"
|
1832 |
+
top: "Mconv4_stage4_L1"
|
1833 |
+
param {
|
1834 |
+
lr_mult: 4.0
|
1835 |
+
decay_mult: 1
|
1836 |
+
}
|
1837 |
+
param {
|
1838 |
+
lr_mult: 8.0
|
1839 |
+
decay_mult: 0
|
1840 |
+
}
|
1841 |
+
convolution_param {
|
1842 |
+
num_output: 128
|
1843 |
+
pad: 3
|
1844 |
+
kernel_size: 7
|
1845 |
+
weight_filler {
|
1846 |
+
type: "gaussian"
|
1847 |
+
std: 0.01
|
1848 |
+
}
|
1849 |
+
bias_filler {
|
1850 |
+
type: "constant"
|
1851 |
+
}
|
1852 |
+
}
|
1853 |
+
}
|
1854 |
+
layer {
|
1855 |
+
name: "Mrelu4_stage4_L1"
|
1856 |
+
type: "ReLU"
|
1857 |
+
bottom: "Mconv4_stage4_L1"
|
1858 |
+
top: "Mconv4_stage4_L1"
|
1859 |
+
}
|
1860 |
+
layer {
|
1861 |
+
name: "Mconv4_stage4_L2"
|
1862 |
+
type: "Convolution"
|
1863 |
+
bottom: "Mconv3_stage4_L2"
|
1864 |
+
top: "Mconv4_stage4_L2"
|
1865 |
+
param {
|
1866 |
+
lr_mult: 4.0
|
1867 |
+
decay_mult: 1
|
1868 |
+
}
|
1869 |
+
param {
|
1870 |
+
lr_mult: 8.0
|
1871 |
+
decay_mult: 0
|
1872 |
+
}
|
1873 |
+
convolution_param {
|
1874 |
+
num_output: 128
|
1875 |
+
pad: 3
|
1876 |
+
kernel_size: 7
|
1877 |
+
weight_filler {
|
1878 |
+
type: "gaussian"
|
1879 |
+
std: 0.01
|
1880 |
+
}
|
1881 |
+
bias_filler {
|
1882 |
+
type: "constant"
|
1883 |
+
}
|
1884 |
+
}
|
1885 |
+
}
|
1886 |
+
layer {
|
1887 |
+
name: "Mrelu4_stage4_L2"
|
1888 |
+
type: "ReLU"
|
1889 |
+
bottom: "Mconv4_stage4_L2"
|
1890 |
+
top: "Mconv4_stage4_L2"
|
1891 |
+
}
|
1892 |
+
layer {
|
1893 |
+
name: "Mconv5_stage4_L1"
|
1894 |
+
type: "Convolution"
|
1895 |
+
bottom: "Mconv4_stage4_L1"
|
1896 |
+
top: "Mconv5_stage4_L1"
|
1897 |
+
param {
|
1898 |
+
lr_mult: 4.0
|
1899 |
+
decay_mult: 1
|
1900 |
+
}
|
1901 |
+
param {
|
1902 |
+
lr_mult: 8.0
|
1903 |
+
decay_mult: 0
|
1904 |
+
}
|
1905 |
+
convolution_param {
|
1906 |
+
num_output: 128
|
1907 |
+
pad: 3
|
1908 |
+
kernel_size: 7
|
1909 |
+
weight_filler {
|
1910 |
+
type: "gaussian"
|
1911 |
+
std: 0.01
|
1912 |
+
}
|
1913 |
+
bias_filler {
|
1914 |
+
type: "constant"
|
1915 |
+
}
|
1916 |
+
}
|
1917 |
+
}
|
1918 |
+
layer {
|
1919 |
+
name: "Mrelu5_stage4_L1"
|
1920 |
+
type: "ReLU"
|
1921 |
+
bottom: "Mconv5_stage4_L1"
|
1922 |
+
top: "Mconv5_stage4_L1"
|
1923 |
+
}
|
1924 |
+
layer {
|
1925 |
+
name: "Mconv5_stage4_L2"
|
1926 |
+
type: "Convolution"
|
1927 |
+
bottom: "Mconv4_stage4_L2"
|
1928 |
+
top: "Mconv5_stage4_L2"
|
1929 |
+
param {
|
1930 |
+
lr_mult: 4.0
|
1931 |
+
decay_mult: 1
|
1932 |
+
}
|
1933 |
+
param {
|
1934 |
+
lr_mult: 8.0
|
1935 |
+
decay_mult: 0
|
1936 |
+
}
|
1937 |
+
convolution_param {
|
1938 |
+
num_output: 128
|
1939 |
+
pad: 3
|
1940 |
+
kernel_size: 7
|
1941 |
+
weight_filler {
|
1942 |
+
type: "gaussian"
|
1943 |
+
std: 0.01
|
1944 |
+
}
|
1945 |
+
bias_filler {
|
1946 |
+
type: "constant"
|
1947 |
+
}
|
1948 |
+
}
|
1949 |
+
}
|
1950 |
+
layer {
|
1951 |
+
name: "Mrelu5_stage4_L2"
|
1952 |
+
type: "ReLU"
|
1953 |
+
bottom: "Mconv5_stage4_L2"
|
1954 |
+
top: "Mconv5_stage4_L2"
|
1955 |
+
}
|
1956 |
+
layer {
|
1957 |
+
name: "Mconv6_stage4_L1"
|
1958 |
+
type: "Convolution"
|
1959 |
+
bottom: "Mconv5_stage4_L1"
|
1960 |
+
top: "Mconv6_stage4_L1"
|
1961 |
+
param {
|
1962 |
+
lr_mult: 4.0
|
1963 |
+
decay_mult: 1
|
1964 |
+
}
|
1965 |
+
param {
|
1966 |
+
lr_mult: 8.0
|
1967 |
+
decay_mult: 0
|
1968 |
+
}
|
1969 |
+
convolution_param {
|
1970 |
+
num_output: 128
|
1971 |
+
pad: 0
|
1972 |
+
kernel_size: 1
|
1973 |
+
weight_filler {
|
1974 |
+
type: "gaussian"
|
1975 |
+
std: 0.01
|
1976 |
+
}
|
1977 |
+
bias_filler {
|
1978 |
+
type: "constant"
|
1979 |
+
}
|
1980 |
+
}
|
1981 |
+
}
|
1982 |
+
layer {
|
1983 |
+
name: "Mrelu6_stage4_L1"
|
1984 |
+
type: "ReLU"
|
1985 |
+
bottom: "Mconv6_stage4_L1"
|
1986 |
+
top: "Mconv6_stage4_L1"
|
1987 |
+
}
|
1988 |
+
layer {
|
1989 |
+
name: "Mconv6_stage4_L2"
|
1990 |
+
type: "Convolution"
|
1991 |
+
bottom: "Mconv5_stage4_L2"
|
1992 |
+
top: "Mconv6_stage4_L2"
|
1993 |
+
param {
|
1994 |
+
lr_mult: 4.0
|
1995 |
+
decay_mult: 1
|
1996 |
+
}
|
1997 |
+
param {
|
1998 |
+
lr_mult: 8.0
|
1999 |
+
decay_mult: 0
|
2000 |
+
}
|
2001 |
+
convolution_param {
|
2002 |
+
num_output: 128
|
2003 |
+
pad: 0
|
2004 |
+
kernel_size: 1
|
2005 |
+
weight_filler {
|
2006 |
+
type: "gaussian"
|
2007 |
+
std: 0.01
|
2008 |
+
}
|
2009 |
+
bias_filler {
|
2010 |
+
type: "constant"
|
2011 |
+
}
|
2012 |
+
}
|
2013 |
+
}
|
2014 |
+
layer {
|
2015 |
+
name: "Mrelu6_stage4_L2"
|
2016 |
+
type: "ReLU"
|
2017 |
+
bottom: "Mconv6_stage4_L2"
|
2018 |
+
top: "Mconv6_stage4_L2"
|
2019 |
+
}
|
2020 |
+
layer {
|
2021 |
+
name: "Mconv7_stage4_L1"
|
2022 |
+
type: "Convolution"
|
2023 |
+
bottom: "Mconv6_stage4_L1"
|
2024 |
+
top: "Mconv7_stage4_L1"
|
2025 |
+
param {
|
2026 |
+
lr_mult: 4.0
|
2027 |
+
decay_mult: 1
|
2028 |
+
}
|
2029 |
+
param {
|
2030 |
+
lr_mult: 8.0
|
2031 |
+
decay_mult: 0
|
2032 |
+
}
|
2033 |
+
convolution_param {
|
2034 |
+
num_output: 38
|
2035 |
+
pad: 0
|
2036 |
+
kernel_size: 1
|
2037 |
+
weight_filler {
|
2038 |
+
type: "gaussian"
|
2039 |
+
std: 0.01
|
2040 |
+
}
|
2041 |
+
bias_filler {
|
2042 |
+
type: "constant"
|
2043 |
+
}
|
2044 |
+
}
|
2045 |
+
}
|
2046 |
+
layer {
|
2047 |
+
name: "Mconv7_stage4_L2"
|
2048 |
+
type: "Convolution"
|
2049 |
+
bottom: "Mconv6_stage4_L2"
|
2050 |
+
top: "Mconv7_stage4_L2"
|
2051 |
+
param {
|
2052 |
+
lr_mult: 4.0
|
2053 |
+
decay_mult: 1
|
2054 |
+
}
|
2055 |
+
param {
|
2056 |
+
lr_mult: 8.0
|
2057 |
+
decay_mult: 0
|
2058 |
+
}
|
2059 |
+
convolution_param {
|
2060 |
+
num_output: 19
|
2061 |
+
pad: 0
|
2062 |
+
kernel_size: 1
|
2063 |
+
weight_filler {
|
2064 |
+
type: "gaussian"
|
2065 |
+
std: 0.01
|
2066 |
+
}
|
2067 |
+
bias_filler {
|
2068 |
+
type: "constant"
|
2069 |
+
}
|
2070 |
+
}
|
2071 |
+
}
|
2072 |
+
layer {
|
2073 |
+
name: "concat_stage5"
|
2074 |
+
type: "Concat"
|
2075 |
+
bottom: "Mconv7_stage4_L1"
|
2076 |
+
bottom: "Mconv7_stage4_L2"
|
2077 |
+
bottom: "conv4_4_CPM"
|
2078 |
+
top: "concat_stage5"
|
2079 |
+
concat_param {
|
2080 |
+
axis: 1
|
2081 |
+
}
|
2082 |
+
}
|
2083 |
+
layer {
|
2084 |
+
name: "Mconv1_stage5_L1"
|
2085 |
+
type: "Convolution"
|
2086 |
+
bottom: "concat_stage5"
|
2087 |
+
top: "Mconv1_stage5_L1"
|
2088 |
+
param {
|
2089 |
+
lr_mult: 4.0
|
2090 |
+
decay_mult: 1
|
2091 |
+
}
|
2092 |
+
param {
|
2093 |
+
lr_mult: 8.0
|
2094 |
+
decay_mult: 0
|
2095 |
+
}
|
2096 |
+
convolution_param {
|
2097 |
+
num_output: 128
|
2098 |
+
pad: 3
|
2099 |
+
kernel_size: 7
|
2100 |
+
weight_filler {
|
2101 |
+
type: "gaussian"
|
2102 |
+
std: 0.01
|
2103 |
+
}
|
2104 |
+
bias_filler {
|
2105 |
+
type: "constant"
|
2106 |
+
}
|
2107 |
+
}
|
2108 |
+
}
|
2109 |
+
layer {
|
2110 |
+
name: "Mrelu1_stage5_L1"
|
2111 |
+
type: "ReLU"
|
2112 |
+
bottom: "Mconv1_stage5_L1"
|
2113 |
+
top: "Mconv1_stage5_L1"
|
2114 |
+
}
|
2115 |
+
layer {
|
2116 |
+
name: "Mconv1_stage5_L2"
|
2117 |
+
type: "Convolution"
|
2118 |
+
bottom: "concat_stage5"
|
2119 |
+
top: "Mconv1_stage5_L2"
|
2120 |
+
param {
|
2121 |
+
lr_mult: 4.0
|
2122 |
+
decay_mult: 1
|
2123 |
+
}
|
2124 |
+
param {
|
2125 |
+
lr_mult: 8.0
|
2126 |
+
decay_mult: 0
|
2127 |
+
}
|
2128 |
+
convolution_param {
|
2129 |
+
num_output: 128
|
2130 |
+
pad: 3
|
2131 |
+
kernel_size: 7
|
2132 |
+
weight_filler {
|
2133 |
+
type: "gaussian"
|
2134 |
+
std: 0.01
|
2135 |
+
}
|
2136 |
+
bias_filler {
|
2137 |
+
type: "constant"
|
2138 |
+
}
|
2139 |
+
}
|
2140 |
+
}
|
2141 |
+
layer {
|
2142 |
+
name: "Mrelu1_stage5_L2"
|
2143 |
+
type: "ReLU"
|
2144 |
+
bottom: "Mconv1_stage5_L2"
|
2145 |
+
top: "Mconv1_stage5_L2"
|
2146 |
+
}
|
2147 |
+
layer {
|
2148 |
+
name: "Mconv2_stage5_L1"
|
2149 |
+
type: "Convolution"
|
2150 |
+
bottom: "Mconv1_stage5_L1"
|
2151 |
+
top: "Mconv2_stage5_L1"
|
2152 |
+
param {
|
2153 |
+
lr_mult: 4.0
|
2154 |
+
decay_mult: 1
|
2155 |
+
}
|
2156 |
+
param {
|
2157 |
+
lr_mult: 8.0
|
2158 |
+
decay_mult: 0
|
2159 |
+
}
|
2160 |
+
convolution_param {
|
2161 |
+
num_output: 128
|
2162 |
+
pad: 3
|
2163 |
+
kernel_size: 7
|
2164 |
+
weight_filler {
|
2165 |
+
type: "gaussian"
|
2166 |
+
std: 0.01
|
2167 |
+
}
|
2168 |
+
bias_filler {
|
2169 |
+
type: "constant"
|
2170 |
+
}
|
2171 |
+
}
|
2172 |
+
}
|
2173 |
+
layer {
|
2174 |
+
name: "Mrelu2_stage5_L1"
|
2175 |
+
type: "ReLU"
|
2176 |
+
bottom: "Mconv2_stage5_L1"
|
2177 |
+
top: "Mconv2_stage5_L1"
|
2178 |
+
}
|
2179 |
+
layer {
|
2180 |
+
name: "Mconv2_stage5_L2"
|
2181 |
+
type: "Convolution"
|
2182 |
+
bottom: "Mconv1_stage5_L2"
|
2183 |
+
top: "Mconv2_stage5_L2"
|
2184 |
+
param {
|
2185 |
+
lr_mult: 4.0
|
2186 |
+
decay_mult: 1
|
2187 |
+
}
|
2188 |
+
param {
|
2189 |
+
lr_mult: 8.0
|
2190 |
+
decay_mult: 0
|
2191 |
+
}
|
2192 |
+
convolution_param {
|
2193 |
+
num_output: 128
|
2194 |
+
pad: 3
|
2195 |
+
kernel_size: 7
|
2196 |
+
weight_filler {
|
2197 |
+
type: "gaussian"
|
2198 |
+
std: 0.01
|
2199 |
+
}
|
2200 |
+
bias_filler {
|
2201 |
+
type: "constant"
|
2202 |
+
}
|
2203 |
+
}
|
2204 |
+
}
|
2205 |
+
layer {
|
2206 |
+
name: "Mrelu2_stage5_L2"
|
2207 |
+
type: "ReLU"
|
2208 |
+
bottom: "Mconv2_stage5_L2"
|
2209 |
+
top: "Mconv2_stage5_L2"
|
2210 |
+
}
|
2211 |
+
layer {
|
2212 |
+
name: "Mconv3_stage5_L1"
|
2213 |
+
type: "Convolution"
|
2214 |
+
bottom: "Mconv2_stage5_L1"
|
2215 |
+
top: "Mconv3_stage5_L1"
|
2216 |
+
param {
|
2217 |
+
lr_mult: 4.0
|
2218 |
+
decay_mult: 1
|
2219 |
+
}
|
2220 |
+
param {
|
2221 |
+
lr_mult: 8.0
|
2222 |
+
decay_mult: 0
|
2223 |
+
}
|
2224 |
+
convolution_param {
|
2225 |
+
num_output: 128
|
2226 |
+
pad: 3
|
2227 |
+
kernel_size: 7
|
2228 |
+
weight_filler {
|
2229 |
+
type: "gaussian"
|
2230 |
+
std: 0.01
|
2231 |
+
}
|
2232 |
+
bias_filler {
|
2233 |
+
type: "constant"
|
2234 |
+
}
|
2235 |
+
}
|
2236 |
+
}
|
2237 |
+
layer {
|
2238 |
+
name: "Mrelu3_stage5_L1"
|
2239 |
+
type: "ReLU"
|
2240 |
+
bottom: "Mconv3_stage5_L1"
|
2241 |
+
top: "Mconv3_stage5_L1"
|
2242 |
+
}
|
2243 |
+
layer {
|
2244 |
+
name: "Mconv3_stage5_L2"
|
2245 |
+
type: "Convolution"
|
2246 |
+
bottom: "Mconv2_stage5_L2"
|
2247 |
+
top: "Mconv3_stage5_L2"
|
2248 |
+
param {
|
2249 |
+
lr_mult: 4.0
|
2250 |
+
decay_mult: 1
|
2251 |
+
}
|
2252 |
+
param {
|
2253 |
+
lr_mult: 8.0
|
2254 |
+
decay_mult: 0
|
2255 |
+
}
|
2256 |
+
convolution_param {
|
2257 |
+
num_output: 128
|
2258 |
+
pad: 3
|
2259 |
+
kernel_size: 7
|
2260 |
+
weight_filler {
|
2261 |
+
type: "gaussian"
|
2262 |
+
std: 0.01
|
2263 |
+
}
|
2264 |
+
bias_filler {
|
2265 |
+
type: "constant"
|
2266 |
+
}
|
2267 |
+
}
|
2268 |
+
}
|
2269 |
+
layer {
|
2270 |
+
name: "Mrelu3_stage5_L2"
|
2271 |
+
type: "ReLU"
|
2272 |
+
bottom: "Mconv3_stage5_L2"
|
2273 |
+
top: "Mconv3_stage5_L2"
|
2274 |
+
}
|
2275 |
+
layer {
|
2276 |
+
name: "Mconv4_stage5_L1"
|
2277 |
+
type: "Convolution"
|
2278 |
+
bottom: "Mconv3_stage5_L1"
|
2279 |
+
top: "Mconv4_stage5_L1"
|
2280 |
+
param {
|
2281 |
+
lr_mult: 4.0
|
2282 |
+
decay_mult: 1
|
2283 |
+
}
|
2284 |
+
param {
|
2285 |
+
lr_mult: 8.0
|
2286 |
+
decay_mult: 0
|
2287 |
+
}
|
2288 |
+
convolution_param {
|
2289 |
+
num_output: 128
|
2290 |
+
pad: 3
|
2291 |
+
kernel_size: 7
|
2292 |
+
weight_filler {
|
2293 |
+
type: "gaussian"
|
2294 |
+
std: 0.01
|
2295 |
+
}
|
2296 |
+
bias_filler {
|
2297 |
+
type: "constant"
|
2298 |
+
}
|
2299 |
+
}
|
2300 |
+
}
|
2301 |
+
layer {
|
2302 |
+
name: "Mrelu4_stage5_L1"
|
2303 |
+
type: "ReLU"
|
2304 |
+
bottom: "Mconv4_stage5_L1"
|
2305 |
+
top: "Mconv4_stage5_L1"
|
2306 |
+
}
|
2307 |
+
layer {
|
2308 |
+
name: "Mconv4_stage5_L2"
|
2309 |
+
type: "Convolution"
|
2310 |
+
bottom: "Mconv3_stage5_L2"
|
2311 |
+
top: "Mconv4_stage5_L2"
|
2312 |
+
param {
|
2313 |
+
lr_mult: 4.0
|
2314 |
+
decay_mult: 1
|
2315 |
+
}
|
2316 |
+
param {
|
2317 |
+
lr_mult: 8.0
|
2318 |
+
decay_mult: 0
|
2319 |
+
}
|
2320 |
+
convolution_param {
|
2321 |
+
num_output: 128
|
2322 |
+
pad: 3
|
2323 |
+
kernel_size: 7
|
2324 |
+
weight_filler {
|
2325 |
+
type: "gaussian"
|
2326 |
+
std: 0.01
|
2327 |
+
}
|
2328 |
+
bias_filler {
|
2329 |
+
type: "constant"
|
2330 |
+
}
|
2331 |
+
}
|
2332 |
+
}
|
2333 |
+
layer {
|
2334 |
+
name: "Mrelu4_stage5_L2"
|
2335 |
+
type: "ReLU"
|
2336 |
+
bottom: "Mconv4_stage5_L2"
|
2337 |
+
top: "Mconv4_stage5_L2"
|
2338 |
+
}
|
2339 |
+
layer {
|
2340 |
+
name: "Mconv5_stage5_L1"
|
2341 |
+
type: "Convolution"
|
2342 |
+
bottom: "Mconv4_stage5_L1"
|
2343 |
+
top: "Mconv5_stage5_L1"
|
2344 |
+
param {
|
2345 |
+
lr_mult: 4.0
|
2346 |
+
decay_mult: 1
|
2347 |
+
}
|
2348 |
+
param {
|
2349 |
+
lr_mult: 8.0
|
2350 |
+
decay_mult: 0
|
2351 |
+
}
|
2352 |
+
convolution_param {
|
2353 |
+
num_output: 128
|
2354 |
+
pad: 3
|
2355 |
+
kernel_size: 7
|
2356 |
+
weight_filler {
|
2357 |
+
type: "gaussian"
|
2358 |
+
std: 0.01
|
2359 |
+
}
|
2360 |
+
bias_filler {
|
2361 |
+
type: "constant"
|
2362 |
+
}
|
2363 |
+
}
|
2364 |
+
}
|
2365 |
+
layer {
|
2366 |
+
name: "Mrelu5_stage5_L1"
|
2367 |
+
type: "ReLU"
|
2368 |
+
bottom: "Mconv5_stage5_L1"
|
2369 |
+
top: "Mconv5_stage5_L1"
|
2370 |
+
}
|
2371 |
+
layer {
|
2372 |
+
name: "Mconv5_stage5_L2"
|
2373 |
+
type: "Convolution"
|
2374 |
+
bottom: "Mconv4_stage5_L2"
|
2375 |
+
top: "Mconv5_stage5_L2"
|
2376 |
+
param {
|
2377 |
+
lr_mult: 4.0
|
2378 |
+
decay_mult: 1
|
2379 |
+
}
|
2380 |
+
param {
|
2381 |
+
lr_mult: 8.0
|
2382 |
+
decay_mult: 0
|
2383 |
+
}
|
2384 |
+
convolution_param {
|
2385 |
+
num_output: 128
|
2386 |
+
pad: 3
|
2387 |
+
kernel_size: 7
|
2388 |
+
weight_filler {
|
2389 |
+
type: "gaussian"
|
2390 |
+
std: 0.01
|
2391 |
+
}
|
2392 |
+
bias_filler {
|
2393 |
+
type: "constant"
|
2394 |
+
}
|
2395 |
+
}
|
2396 |
+
}
|
2397 |
+
layer {
|
2398 |
+
name: "Mrelu5_stage5_L2"
|
2399 |
+
type: "ReLU"
|
2400 |
+
bottom: "Mconv5_stage5_L2"
|
2401 |
+
top: "Mconv5_stage5_L2"
|
2402 |
+
}
|
2403 |
+
layer {
|
2404 |
+
name: "Mconv6_stage5_L1"
|
2405 |
+
type: "Convolution"
|
2406 |
+
bottom: "Mconv5_stage5_L1"
|
2407 |
+
top: "Mconv6_stage5_L1"
|
2408 |
+
param {
|
2409 |
+
lr_mult: 4.0
|
2410 |
+
decay_mult: 1
|
2411 |
+
}
|
2412 |
+
param {
|
2413 |
+
lr_mult: 8.0
|
2414 |
+
decay_mult: 0
|
2415 |
+
}
|
2416 |
+
convolution_param {
|
2417 |
+
num_output: 128
|
2418 |
+
pad: 0
|
2419 |
+
kernel_size: 1
|
2420 |
+
weight_filler {
|
2421 |
+
type: "gaussian"
|
2422 |
+
std: 0.01
|
2423 |
+
}
|
2424 |
+
bias_filler {
|
2425 |
+
type: "constant"
|
2426 |
+
}
|
2427 |
+
}
|
2428 |
+
}
|
2429 |
+
layer {
|
2430 |
+
name: "Mrelu6_stage5_L1"
|
2431 |
+
type: "ReLU"
|
2432 |
+
bottom: "Mconv6_stage5_L1"
|
2433 |
+
top: "Mconv6_stage5_L1"
|
2434 |
+
}
|
2435 |
+
layer {
|
2436 |
+
name: "Mconv6_stage5_L2"
|
2437 |
+
type: "Convolution"
|
2438 |
+
bottom: "Mconv5_stage5_L2"
|
2439 |
+
top: "Mconv6_stage5_L2"
|
2440 |
+
param {
|
2441 |
+
lr_mult: 4.0
|
2442 |
+
decay_mult: 1
|
2443 |
+
}
|
2444 |
+
param {
|
2445 |
+
lr_mult: 8.0
|
2446 |
+
decay_mult: 0
|
2447 |
+
}
|
2448 |
+
convolution_param {
|
2449 |
+
num_output: 128
|
2450 |
+
pad: 0
|
2451 |
+
kernel_size: 1
|
2452 |
+
weight_filler {
|
2453 |
+
type: "gaussian"
|
2454 |
+
std: 0.01
|
2455 |
+
}
|
2456 |
+
bias_filler {
|
2457 |
+
type: "constant"
|
2458 |
+
}
|
2459 |
+
}
|
2460 |
+
}
|
2461 |
+
layer {
|
2462 |
+
name: "Mrelu6_stage5_L2"
|
2463 |
+
type: "ReLU"
|
2464 |
+
bottom: "Mconv6_stage5_L2"
|
2465 |
+
top: "Mconv6_stage5_L2"
|
2466 |
+
}
|
2467 |
+
layer {
|
2468 |
+
name: "Mconv7_stage5_L1"
|
2469 |
+
type: "Convolution"
|
2470 |
+
bottom: "Mconv6_stage5_L1"
|
2471 |
+
top: "Mconv7_stage5_L1"
|
2472 |
+
param {
|
2473 |
+
lr_mult: 4.0
|
2474 |
+
decay_mult: 1
|
2475 |
+
}
|
2476 |
+
param {
|
2477 |
+
lr_mult: 8.0
|
2478 |
+
decay_mult: 0
|
2479 |
+
}
|
2480 |
+
convolution_param {
|
2481 |
+
num_output: 38
|
2482 |
+
pad: 0
|
2483 |
+
kernel_size: 1
|
2484 |
+
weight_filler {
|
2485 |
+
type: "gaussian"
|
2486 |
+
std: 0.01
|
2487 |
+
}
|
2488 |
+
bias_filler {
|
2489 |
+
type: "constant"
|
2490 |
+
}
|
2491 |
+
}
|
2492 |
+
}
|
2493 |
+
layer {
|
2494 |
+
name: "Mconv7_stage5_L2"
|
2495 |
+
type: "Convolution"
|
2496 |
+
bottom: "Mconv6_stage5_L2"
|
2497 |
+
top: "Mconv7_stage5_L2"
|
2498 |
+
param {
|
2499 |
+
lr_mult: 4.0
|
2500 |
+
decay_mult: 1
|
2501 |
+
}
|
2502 |
+
param {
|
2503 |
+
lr_mult: 8.0
|
2504 |
+
decay_mult: 0
|
2505 |
+
}
|
2506 |
+
convolution_param {
|
2507 |
+
num_output: 19
|
2508 |
+
pad: 0
|
2509 |
+
kernel_size: 1
|
2510 |
+
weight_filler {
|
2511 |
+
type: "gaussian"
|
2512 |
+
std: 0.01
|
2513 |
+
}
|
2514 |
+
bias_filler {
|
2515 |
+
type: "constant"
|
2516 |
+
}
|
2517 |
+
}
|
2518 |
+
}
|
2519 |
+
layer {
|
2520 |
+
name: "concat_stage6"
|
2521 |
+
type: "Concat"
|
2522 |
+
bottom: "Mconv7_stage5_L1"
|
2523 |
+
bottom: "Mconv7_stage5_L2"
|
2524 |
+
bottom: "conv4_4_CPM"
|
2525 |
+
top: "concat_stage6"
|
2526 |
+
concat_param {
|
2527 |
+
axis: 1
|
2528 |
+
}
|
2529 |
+
}
|
2530 |
+
layer {
|
2531 |
+
name: "Mconv1_stage6_L1"
|
2532 |
+
type: "Convolution"
|
2533 |
+
bottom: "concat_stage6"
|
2534 |
+
top: "Mconv1_stage6_L1"
|
2535 |
+
param {
|
2536 |
+
lr_mult: 4.0
|
2537 |
+
decay_mult: 1
|
2538 |
+
}
|
2539 |
+
param {
|
2540 |
+
lr_mult: 8.0
|
2541 |
+
decay_mult: 0
|
2542 |
+
}
|
2543 |
+
convolution_param {
|
2544 |
+
num_output: 128
|
2545 |
+
pad: 3
|
2546 |
+
kernel_size: 7
|
2547 |
+
weight_filler {
|
2548 |
+
type: "gaussian"
|
2549 |
+
std: 0.01
|
2550 |
+
}
|
2551 |
+
bias_filler {
|
2552 |
+
type: "constant"
|
2553 |
+
}
|
2554 |
+
}
|
2555 |
+
}
|
2556 |
+
layer {
|
2557 |
+
name: "Mrelu1_stage6_L1"
|
2558 |
+
type: "ReLU"
|
2559 |
+
bottom: "Mconv1_stage6_L1"
|
2560 |
+
top: "Mconv1_stage6_L1"
|
2561 |
+
}
|
2562 |
+
layer {
|
2563 |
+
name: "Mconv1_stage6_L2"
|
2564 |
+
type: "Convolution"
|
2565 |
+
bottom: "concat_stage6"
|
2566 |
+
top: "Mconv1_stage6_L2"
|
2567 |
+
param {
|
2568 |
+
lr_mult: 4.0
|
2569 |
+
decay_mult: 1
|
2570 |
+
}
|
2571 |
+
param {
|
2572 |
+
lr_mult: 8.0
|
2573 |
+
decay_mult: 0
|
2574 |
+
}
|
2575 |
+
convolution_param {
|
2576 |
+
num_output: 128
|
2577 |
+
pad: 3
|
2578 |
+
kernel_size: 7
|
2579 |
+
weight_filler {
|
2580 |
+
type: "gaussian"
|
2581 |
+
std: 0.01
|
2582 |
+
}
|
2583 |
+
bias_filler {
|
2584 |
+
type: "constant"
|
2585 |
+
}
|
2586 |
+
}
|
2587 |
+
}
|
2588 |
+
layer {
|
2589 |
+
name: "Mrelu1_stage6_L2"
|
2590 |
+
type: "ReLU"
|
2591 |
+
bottom: "Mconv1_stage6_L2"
|
2592 |
+
top: "Mconv1_stage6_L2"
|
2593 |
+
}
|
2594 |
+
layer {
|
2595 |
+
name: "Mconv2_stage6_L1"
|
2596 |
+
type: "Convolution"
|
2597 |
+
bottom: "Mconv1_stage6_L1"
|
2598 |
+
top: "Mconv2_stage6_L1"
|
2599 |
+
param {
|
2600 |
+
lr_mult: 4.0
|
2601 |
+
decay_mult: 1
|
2602 |
+
}
|
2603 |
+
param {
|
2604 |
+
lr_mult: 8.0
|
2605 |
+
decay_mult: 0
|
2606 |
+
}
|
2607 |
+
convolution_param {
|
2608 |
+
num_output: 128
|
2609 |
+
pad: 3
|
2610 |
+
kernel_size: 7
|
2611 |
+
weight_filler {
|
2612 |
+
type: "gaussian"
|
2613 |
+
std: 0.01
|
2614 |
+
}
|
2615 |
+
bias_filler {
|
2616 |
+
type: "constant"
|
2617 |
+
}
|
2618 |
+
}
|
2619 |
+
}
|
2620 |
+
layer {
|
2621 |
+
name: "Mrelu2_stage6_L1"
|
2622 |
+
type: "ReLU"
|
2623 |
+
bottom: "Mconv2_stage6_L1"
|
2624 |
+
top: "Mconv2_stage6_L1"
|
2625 |
+
}
|
2626 |
+
layer {
|
2627 |
+
name: "Mconv2_stage6_L2"
|
2628 |
+
type: "Convolution"
|
2629 |
+
bottom: "Mconv1_stage6_L2"
|
2630 |
+
top: "Mconv2_stage6_L2"
|
2631 |
+
param {
|
2632 |
+
lr_mult: 4.0
|
2633 |
+
decay_mult: 1
|
2634 |
+
}
|
2635 |
+
param {
|
2636 |
+
lr_mult: 8.0
|
2637 |
+
decay_mult: 0
|
2638 |
+
}
|
2639 |
+
convolution_param {
|
2640 |
+
num_output: 128
|
2641 |
+
pad: 3
|
2642 |
+
kernel_size: 7
|
2643 |
+
weight_filler {
|
2644 |
+
type: "gaussian"
|
2645 |
+
std: 0.01
|
2646 |
+
}
|
2647 |
+
bias_filler {
|
2648 |
+
type: "constant"
|
2649 |
+
}
|
2650 |
+
}
|
2651 |
+
}
|
2652 |
+
layer {
|
2653 |
+
name: "Mrelu2_stage6_L2"
|
2654 |
+
type: "ReLU"
|
2655 |
+
bottom: "Mconv2_stage6_L2"
|
2656 |
+
top: "Mconv2_stage6_L2"
|
2657 |
+
}
|
2658 |
+
layer {
|
2659 |
+
name: "Mconv3_stage6_L1"
|
2660 |
+
type: "Convolution"
|
2661 |
+
bottom: "Mconv2_stage6_L1"
|
2662 |
+
top: "Mconv3_stage6_L1"
|
2663 |
+
param {
|
2664 |
+
lr_mult: 4.0
|
2665 |
+
decay_mult: 1
|
2666 |
+
}
|
2667 |
+
param {
|
2668 |
+
lr_mult: 8.0
|
2669 |
+
decay_mult: 0
|
2670 |
+
}
|
2671 |
+
convolution_param {
|
2672 |
+
num_output: 128
|
2673 |
+
pad: 3
|
2674 |
+
kernel_size: 7
|
2675 |
+
weight_filler {
|
2676 |
+
type: "gaussian"
|
2677 |
+
std: 0.01
|
2678 |
+
}
|
2679 |
+
bias_filler {
|
2680 |
+
type: "constant"
|
2681 |
+
}
|
2682 |
+
}
|
2683 |
+
}
|
2684 |
+
layer {
|
2685 |
+
name: "Mrelu3_stage6_L1"
|
2686 |
+
type: "ReLU"
|
2687 |
+
bottom: "Mconv3_stage6_L1"
|
2688 |
+
top: "Mconv3_stage6_L1"
|
2689 |
+
}
|
2690 |
+
layer {
|
2691 |
+
name: "Mconv3_stage6_L2"
|
2692 |
+
type: "Convolution"
|
2693 |
+
bottom: "Mconv2_stage6_L2"
|
2694 |
+
top: "Mconv3_stage6_L2"
|
2695 |
+
param {
|
2696 |
+
lr_mult: 4.0
|
2697 |
+
decay_mult: 1
|
2698 |
+
}
|
2699 |
+
param {
|
2700 |
+
lr_mult: 8.0
|
2701 |
+
decay_mult: 0
|
2702 |
+
}
|
2703 |
+
convolution_param {
|
2704 |
+
num_output: 128
|
2705 |
+
pad: 3
|
2706 |
+
kernel_size: 7
|
2707 |
+
weight_filler {
|
2708 |
+
type: "gaussian"
|
2709 |
+
std: 0.01
|
2710 |
+
}
|
2711 |
+
bias_filler {
|
2712 |
+
type: "constant"
|
2713 |
+
}
|
2714 |
+
}
|
2715 |
+
}
|
2716 |
+
layer {
|
2717 |
+
name: "Mrelu3_stage6_L2"
|
2718 |
+
type: "ReLU"
|
2719 |
+
bottom: "Mconv3_stage6_L2"
|
2720 |
+
top: "Mconv3_stage6_L2"
|
2721 |
+
}
|
2722 |
+
layer {
|
2723 |
+
name: "Mconv4_stage6_L1"
|
2724 |
+
type: "Convolution"
|
2725 |
+
bottom: "Mconv3_stage6_L1"
|
2726 |
+
top: "Mconv4_stage6_L1"
|
2727 |
+
param {
|
2728 |
+
lr_mult: 4.0
|
2729 |
+
decay_mult: 1
|
2730 |
+
}
|
2731 |
+
param {
|
2732 |
+
lr_mult: 8.0
|
2733 |
+
decay_mult: 0
|
2734 |
+
}
|
2735 |
+
convolution_param {
|
2736 |
+
num_output: 128
|
2737 |
+
pad: 3
|
2738 |
+
kernel_size: 7
|
2739 |
+
weight_filler {
|
2740 |
+
type: "gaussian"
|
2741 |
+
std: 0.01
|
2742 |
+
}
|
2743 |
+
bias_filler {
|
2744 |
+
type: "constant"
|
2745 |
+
}
|
2746 |
+
}
|
2747 |
+
}
|
2748 |
+
layer {
|
2749 |
+
name: "Mrelu4_stage6_L1"
|
2750 |
+
type: "ReLU"
|
2751 |
+
bottom: "Mconv4_stage6_L1"
|
2752 |
+
top: "Mconv4_stage6_L1"
|
2753 |
+
}
|
2754 |
+
layer {
|
2755 |
+
name: "Mconv4_stage6_L2"
|
2756 |
+
type: "Convolution"
|
2757 |
+
bottom: "Mconv3_stage6_L2"
|
2758 |
+
top: "Mconv4_stage6_L2"
|
2759 |
+
param {
|
2760 |
+
lr_mult: 4.0
|
2761 |
+
decay_mult: 1
|
2762 |
+
}
|
2763 |
+
param {
|
2764 |
+
lr_mult: 8.0
|
2765 |
+
decay_mult: 0
|
2766 |
+
}
|
2767 |
+
convolution_param {
|
2768 |
+
num_output: 128
|
2769 |
+
pad: 3
|
2770 |
+
kernel_size: 7
|
2771 |
+
weight_filler {
|
2772 |
+
type: "gaussian"
|
2773 |
+
std: 0.01
|
2774 |
+
}
|
2775 |
+
bias_filler {
|
2776 |
+
type: "constant"
|
2777 |
+
}
|
2778 |
+
}
|
2779 |
+
}
|
2780 |
+
layer {
|
2781 |
+
name: "Mrelu4_stage6_L2"
|
2782 |
+
type: "ReLU"
|
2783 |
+
bottom: "Mconv4_stage6_L2"
|
2784 |
+
top: "Mconv4_stage6_L2"
|
2785 |
+
}
|
2786 |
+
layer {
|
2787 |
+
name: "Mconv5_stage6_L1"
|
2788 |
+
type: "Convolution"
|
2789 |
+
bottom: "Mconv4_stage6_L1"
|
2790 |
+
top: "Mconv5_stage6_L1"
|
2791 |
+
param {
|
2792 |
+
lr_mult: 4.0
|
2793 |
+
decay_mult: 1
|
2794 |
+
}
|
2795 |
+
param {
|
2796 |
+
lr_mult: 8.0
|
2797 |
+
decay_mult: 0
|
2798 |
+
}
|
2799 |
+
convolution_param {
|
2800 |
+
num_output: 128
|
2801 |
+
pad: 3
|
2802 |
+
kernel_size: 7
|
2803 |
+
weight_filler {
|
2804 |
+
type: "gaussian"
|
2805 |
+
std: 0.01
|
2806 |
+
}
|
2807 |
+
bias_filler {
|
2808 |
+
type: "constant"
|
2809 |
+
}
|
2810 |
+
}
|
2811 |
+
}
|
2812 |
+
layer {
|
2813 |
+
name: "Mrelu5_stage6_L1"
|
2814 |
+
type: "ReLU"
|
2815 |
+
bottom: "Mconv5_stage6_L1"
|
2816 |
+
top: "Mconv5_stage6_L1"
|
2817 |
+
}
|
2818 |
+
layer {
|
2819 |
+
name: "Mconv5_stage6_L2"
|
2820 |
+
type: "Convolution"
|
2821 |
+
bottom: "Mconv4_stage6_L2"
|
2822 |
+
top: "Mconv5_stage6_L2"
|
2823 |
+
param {
|
2824 |
+
lr_mult: 4.0
|
2825 |
+
decay_mult: 1
|
2826 |
+
}
|
2827 |
+
param {
|
2828 |
+
lr_mult: 8.0
|
2829 |
+
decay_mult: 0
|
2830 |
+
}
|
2831 |
+
convolution_param {
|
2832 |
+
num_output: 128
|
2833 |
+
pad: 3
|
2834 |
+
kernel_size: 7
|
2835 |
+
weight_filler {
|
2836 |
+
type: "gaussian"
|
2837 |
+
std: 0.01
|
2838 |
+
}
|
2839 |
+
bias_filler {
|
2840 |
+
type: "constant"
|
2841 |
+
}
|
2842 |
+
}
|
2843 |
+
}
|
2844 |
+
layer {
|
2845 |
+
name: "Mrelu5_stage6_L2"
|
2846 |
+
type: "ReLU"
|
2847 |
+
bottom: "Mconv5_stage6_L2"
|
2848 |
+
top: "Mconv5_stage6_L2"
|
2849 |
+
}
|
2850 |
+
layer {
|
2851 |
+
name: "Mconv6_stage6_L1"
|
2852 |
+
type: "Convolution"
|
2853 |
+
bottom: "Mconv5_stage6_L1"
|
2854 |
+
top: "Mconv6_stage6_L1"
|
2855 |
+
param {
|
2856 |
+
lr_mult: 4.0
|
2857 |
+
decay_mult: 1
|
2858 |
+
}
|
2859 |
+
param {
|
2860 |
+
lr_mult: 8.0
|
2861 |
+
decay_mult: 0
|
2862 |
+
}
|
2863 |
+
convolution_param {
|
2864 |
+
num_output: 128
|
2865 |
+
pad: 0
|
2866 |
+
kernel_size: 1
|
2867 |
+
weight_filler {
|
2868 |
+
type: "gaussian"
|
2869 |
+
std: 0.01
|
2870 |
+
}
|
2871 |
+
bias_filler {
|
2872 |
+
type: "constant"
|
2873 |
+
}
|
2874 |
+
}
|
2875 |
+
}
|
2876 |
+
layer {
|
2877 |
+
name: "Mrelu6_stage6_L1"
|
2878 |
+
type: "ReLU"
|
2879 |
+
bottom: "Mconv6_stage6_L1"
|
2880 |
+
top: "Mconv6_stage6_L1"
|
2881 |
+
}
|
2882 |
+
layer {
|
2883 |
+
name: "Mconv6_stage6_L2"
|
2884 |
+
type: "Convolution"
|
2885 |
+
bottom: "Mconv5_stage6_L2"
|
2886 |
+
top: "Mconv6_stage6_L2"
|
2887 |
+
param {
|
2888 |
+
lr_mult: 4.0
|
2889 |
+
decay_mult: 1
|
2890 |
+
}
|
2891 |
+
param {
|
2892 |
+
lr_mult: 8.0
|
2893 |
+
decay_mult: 0
|
2894 |
+
}
|
2895 |
+
convolution_param {
|
2896 |
+
num_output: 128
|
2897 |
+
pad: 0
|
2898 |
+
kernel_size: 1
|
2899 |
+
weight_filler {
|
2900 |
+
type: "gaussian"
|
2901 |
+
std: 0.01
|
2902 |
+
}
|
2903 |
+
bias_filler {
|
2904 |
+
type: "constant"
|
2905 |
+
}
|
2906 |
+
}
|
2907 |
+
}
|
2908 |
+
layer {
|
2909 |
+
name: "Mrelu6_stage6_L2"
|
2910 |
+
type: "ReLU"
|
2911 |
+
bottom: "Mconv6_stage6_L2"
|
2912 |
+
top: "Mconv6_stage6_L2"
|
2913 |
+
}
|
2914 |
+
layer {
|
2915 |
+
name: "Mconv7_stage6_L1"
|
2916 |
+
type: "Convolution"
|
2917 |
+
bottom: "Mconv6_stage6_L1"
|
2918 |
+
top: "Mconv7_stage6_L1"
|
2919 |
+
param {
|
2920 |
+
lr_mult: 4.0
|
2921 |
+
decay_mult: 1
|
2922 |
+
}
|
2923 |
+
param {
|
2924 |
+
lr_mult: 8.0
|
2925 |
+
decay_mult: 0
|
2926 |
+
}
|
2927 |
+
convolution_param {
|
2928 |
+
num_output: 38
|
2929 |
+
pad: 0
|
2930 |
+
kernel_size: 1
|
2931 |
+
weight_filler {
|
2932 |
+
type: "gaussian"
|
2933 |
+
std: 0.01
|
2934 |
+
}
|
2935 |
+
bias_filler {
|
2936 |
+
type: "constant"
|
2937 |
+
}
|
2938 |
+
}
|
2939 |
+
}
|
2940 |
+
layer {
|
2941 |
+
name: "Mconv7_stage6_L2"
|
2942 |
+
type: "Convolution"
|
2943 |
+
bottom: "Mconv6_stage6_L2"
|
2944 |
+
top: "Mconv7_stage6_L2"
|
2945 |
+
param {
|
2946 |
+
lr_mult: 4.0
|
2947 |
+
decay_mult: 1
|
2948 |
+
}
|
2949 |
+
param {
|
2950 |
+
lr_mult: 8.0
|
2951 |
+
decay_mult: 0
|
2952 |
+
}
|
2953 |
+
convolution_param {
|
2954 |
+
num_output: 19
|
2955 |
+
pad: 0
|
2956 |
+
kernel_size: 1
|
2957 |
+
weight_filler {
|
2958 |
+
type: "gaussian"
|
2959 |
+
std: 0.01
|
2960 |
+
}
|
2961 |
+
bias_filler {
|
2962 |
+
type: "constant"
|
2963 |
+
}
|
2964 |
+
}
|
2965 |
+
}
|
2966 |
+
layer {
|
2967 |
+
name: "concat_stage7"
|
2968 |
+
type: "Concat"
|
2969 |
+
bottom: "Mconv7_stage6_L2"
|
2970 |
+
bottom: "Mconv7_stage6_L1"
|
2971 |
+
# top: "concat_stage7"
|
2972 |
+
top: "net_output"
|
2973 |
+
concat_param {
|
2974 |
+
axis: 1
|
2975 |
+
}
|
2976 |
+
}
|
model/hand_pose_deploy.prototxt
ADDED
@@ -0,0 +1,1756 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
input: "image"
|
2 |
+
input_dim: 1 # Original: 2
|
3 |
+
input_dim: 3 # It crashes if not left to 3
|
4 |
+
input_dim: 1 # Original: 368
|
5 |
+
input_dim: 1 # Original: 368
|
6 |
+
layer {
|
7 |
+
name: "conv1_1"
|
8 |
+
type: "Convolution"
|
9 |
+
bottom: "image"
|
10 |
+
top: "conv1_1"
|
11 |
+
param {
|
12 |
+
lr_mult: 1.0
|
13 |
+
decay_mult: 1
|
14 |
+
}
|
15 |
+
param {
|
16 |
+
lr_mult: 2.0
|
17 |
+
decay_mult: 0
|
18 |
+
}
|
19 |
+
convolution_param {
|
20 |
+
num_output: 64
|
21 |
+
pad: 1
|
22 |
+
kernel_size: 3
|
23 |
+
weight_filler {
|
24 |
+
type: "xavier"
|
25 |
+
}
|
26 |
+
bias_filler {
|
27 |
+
type: "constant"
|
28 |
+
}
|
29 |
+
dilation: 1
|
30 |
+
}
|
31 |
+
}
|
32 |
+
layer {
|
33 |
+
name: "relu1_1"
|
34 |
+
type: "ReLU"
|
35 |
+
bottom: "conv1_1"
|
36 |
+
top: "conv1_1"
|
37 |
+
}
|
38 |
+
layer {
|
39 |
+
name: "conv1_2"
|
40 |
+
type: "Convolution"
|
41 |
+
bottom: "conv1_1"
|
42 |
+
top: "conv1_2"
|
43 |
+
param {
|
44 |
+
lr_mult: 1.0
|
45 |
+
decay_mult: 1
|
46 |
+
}
|
47 |
+
param {
|
48 |
+
lr_mult: 2.0
|
49 |
+
decay_mult: 0
|
50 |
+
}
|
51 |
+
convolution_param {
|
52 |
+
num_output: 64
|
53 |
+
pad: 1
|
54 |
+
kernel_size: 3
|
55 |
+
weight_filler {
|
56 |
+
type: "xavier"
|
57 |
+
}
|
58 |
+
bias_filler {
|
59 |
+
type: "constant"
|
60 |
+
}
|
61 |
+
dilation: 1
|
62 |
+
}
|
63 |
+
}
|
64 |
+
layer {
|
65 |
+
name: "relu1_2"
|
66 |
+
type: "ReLU"
|
67 |
+
bottom: "conv1_2"
|
68 |
+
top: "conv1_2"
|
69 |
+
}
|
70 |
+
layer {
|
71 |
+
name: "pool1_stage1"
|
72 |
+
type: "Pooling"
|
73 |
+
bottom: "conv1_2"
|
74 |
+
top: "pool1_stage1"
|
75 |
+
pooling_param {
|
76 |
+
pool: MAX
|
77 |
+
kernel_size: 2
|
78 |
+
stride: 2
|
79 |
+
}
|
80 |
+
}
|
81 |
+
layer {
|
82 |
+
name: "conv2_1"
|
83 |
+
type: "Convolution"
|
84 |
+
bottom: "pool1_stage1"
|
85 |
+
top: "conv2_1"
|
86 |
+
param {
|
87 |
+
lr_mult: 1.0
|
88 |
+
decay_mult: 1
|
89 |
+
}
|
90 |
+
param {
|
91 |
+
lr_mult: 2.0
|
92 |
+
decay_mult: 0
|
93 |
+
}
|
94 |
+
convolution_param {
|
95 |
+
num_output: 128
|
96 |
+
pad: 1
|
97 |
+
kernel_size: 3
|
98 |
+
weight_filler {
|
99 |
+
type: "xavier"
|
100 |
+
}
|
101 |
+
bias_filler {
|
102 |
+
type: "constant"
|
103 |
+
}
|
104 |
+
dilation: 1
|
105 |
+
}
|
106 |
+
}
|
107 |
+
layer {
|
108 |
+
name: "relu2_1"
|
109 |
+
type: "ReLU"
|
110 |
+
bottom: "conv2_1"
|
111 |
+
top: "conv2_1"
|
112 |
+
}
|
113 |
+
layer {
|
114 |
+
name: "conv2_2"
|
115 |
+
type: "Convolution"
|
116 |
+
bottom: "conv2_1"
|
117 |
+
top: "conv2_2"
|
118 |
+
param {
|
119 |
+
lr_mult: 1.0
|
120 |
+
decay_mult: 1
|
121 |
+
}
|
122 |
+
param {
|
123 |
+
lr_mult: 2.0
|
124 |
+
decay_mult: 0
|
125 |
+
}
|
126 |
+
convolution_param {
|
127 |
+
num_output: 128
|
128 |
+
pad: 1
|
129 |
+
kernel_size: 3
|
130 |
+
weight_filler {
|
131 |
+
type: "xavier"
|
132 |
+
}
|
133 |
+
bias_filler {
|
134 |
+
type: "constant"
|
135 |
+
}
|
136 |
+
dilation: 1
|
137 |
+
}
|
138 |
+
}
|
139 |
+
layer {
|
140 |
+
name: "relu2_2"
|
141 |
+
type: "ReLU"
|
142 |
+
bottom: "conv2_2"
|
143 |
+
top: "conv2_2"
|
144 |
+
}
|
145 |
+
layer {
|
146 |
+
name: "pool2_stage1"
|
147 |
+
type: "Pooling"
|
148 |
+
bottom: "conv2_2"
|
149 |
+
top: "pool2_stage1"
|
150 |
+
pooling_param {
|
151 |
+
pool: MAX
|
152 |
+
kernel_size: 2
|
153 |
+
stride: 2
|
154 |
+
}
|
155 |
+
}
|
156 |
+
layer {
|
157 |
+
name: "conv3_1"
|
158 |
+
type: "Convolution"
|
159 |
+
bottom: "pool2_stage1"
|
160 |
+
top: "conv3_1"
|
161 |
+
param {
|
162 |
+
lr_mult: 1.0
|
163 |
+
decay_mult: 1
|
164 |
+
}
|
165 |
+
param {
|
166 |
+
lr_mult: 2.0
|
167 |
+
decay_mult: 0
|
168 |
+
}
|
169 |
+
convolution_param {
|
170 |
+
num_output: 256
|
171 |
+
pad: 1
|
172 |
+
kernel_size: 3
|
173 |
+
weight_filler {
|
174 |
+
type: "xavier"
|
175 |
+
}
|
176 |
+
bias_filler {
|
177 |
+
type: "constant"
|
178 |
+
}
|
179 |
+
dilation: 1
|
180 |
+
}
|
181 |
+
}
|
182 |
+
layer {
|
183 |
+
name: "relu3_1"
|
184 |
+
type: "ReLU"
|
185 |
+
bottom: "conv3_1"
|
186 |
+
top: "conv3_1"
|
187 |
+
}
|
188 |
+
layer {
|
189 |
+
name: "conv3_2"
|
190 |
+
type: "Convolution"
|
191 |
+
bottom: "conv3_1"
|
192 |
+
top: "conv3_2"
|
193 |
+
param {
|
194 |
+
lr_mult: 1.0
|
195 |
+
decay_mult: 1
|
196 |
+
}
|
197 |
+
param {
|
198 |
+
lr_mult: 2.0
|
199 |
+
decay_mult: 0
|
200 |
+
}
|
201 |
+
convolution_param {
|
202 |
+
num_output: 256
|
203 |
+
pad: 1
|
204 |
+
kernel_size: 3
|
205 |
+
weight_filler {
|
206 |
+
type: "xavier"
|
207 |
+
}
|
208 |
+
bias_filler {
|
209 |
+
type: "constant"
|
210 |
+
}
|
211 |
+
dilation: 1
|
212 |
+
}
|
213 |
+
}
|
214 |
+
layer {
|
215 |
+
name: "relu3_2"
|
216 |
+
type: "ReLU"
|
217 |
+
bottom: "conv3_2"
|
218 |
+
top: "conv3_2"
|
219 |
+
}
|
220 |
+
layer {
|
221 |
+
name: "conv3_3"
|
222 |
+
type: "Convolution"
|
223 |
+
bottom: "conv3_2"
|
224 |
+
top: "conv3_3"
|
225 |
+
param {
|
226 |
+
lr_mult: 1.0
|
227 |
+
decay_mult: 1
|
228 |
+
}
|
229 |
+
param {
|
230 |
+
lr_mult: 2.0
|
231 |
+
decay_mult: 0
|
232 |
+
}
|
233 |
+
convolution_param {
|
234 |
+
num_output: 256
|
235 |
+
pad: 1
|
236 |
+
kernel_size: 3
|
237 |
+
weight_filler {
|
238 |
+
type: "xavier"
|
239 |
+
}
|
240 |
+
bias_filler {
|
241 |
+
type: "constant"
|
242 |
+
}
|
243 |
+
dilation: 1
|
244 |
+
}
|
245 |
+
}
|
246 |
+
layer {
|
247 |
+
name: "relu3_3"
|
248 |
+
type: "ReLU"
|
249 |
+
bottom: "conv3_3"
|
250 |
+
top: "conv3_3"
|
251 |
+
}
|
252 |
+
layer {
|
253 |
+
name: "conv3_4"
|
254 |
+
type: "Convolution"
|
255 |
+
bottom: "conv3_3"
|
256 |
+
top: "conv3_4"
|
257 |
+
param {
|
258 |
+
lr_mult: 1.0
|
259 |
+
decay_mult: 1
|
260 |
+
}
|
261 |
+
param {
|
262 |
+
lr_mult: 2.0
|
263 |
+
decay_mult: 0
|
264 |
+
}
|
265 |
+
convolution_param {
|
266 |
+
num_output: 256
|
267 |
+
pad: 1
|
268 |
+
kernel_size: 3
|
269 |
+
weight_filler {
|
270 |
+
type: "xavier"
|
271 |
+
}
|
272 |
+
bias_filler {
|
273 |
+
type: "constant"
|
274 |
+
}
|
275 |
+
dilation: 1
|
276 |
+
}
|
277 |
+
}
|
278 |
+
layer {
|
279 |
+
name: "relu3_4"
|
280 |
+
type: "ReLU"
|
281 |
+
bottom: "conv3_4"
|
282 |
+
top: "conv3_4"
|
283 |
+
}
|
284 |
+
layer {
|
285 |
+
name: "pool3_stage1"
|
286 |
+
type: "Pooling"
|
287 |
+
bottom: "conv3_4"
|
288 |
+
top: "pool3_stage1"
|
289 |
+
pooling_param {
|
290 |
+
pool: MAX
|
291 |
+
kernel_size: 2
|
292 |
+
stride: 2
|
293 |
+
}
|
294 |
+
}
|
295 |
+
layer {
|
296 |
+
name: "conv4_1"
|
297 |
+
type: "Convolution"
|
298 |
+
bottom: "pool3_stage1"
|
299 |
+
top: "conv4_1"
|
300 |
+
param {
|
301 |
+
lr_mult: 1.0
|
302 |
+
decay_mult: 1
|
303 |
+
}
|
304 |
+
param {
|
305 |
+
lr_mult: 2.0
|
306 |
+
decay_mult: 0
|
307 |
+
}
|
308 |
+
convolution_param {
|
309 |
+
num_output: 512
|
310 |
+
pad: 1
|
311 |
+
kernel_size: 3
|
312 |
+
weight_filler {
|
313 |
+
type: "xavier"
|
314 |
+
}
|
315 |
+
bias_filler {
|
316 |
+
type: "constant"
|
317 |
+
}
|
318 |
+
dilation: 1
|
319 |
+
}
|
320 |
+
}
|
321 |
+
layer {
|
322 |
+
name: "relu4_1"
|
323 |
+
type: "ReLU"
|
324 |
+
bottom: "conv4_1"
|
325 |
+
top: "conv4_1"
|
326 |
+
}
|
327 |
+
layer {
|
328 |
+
name: "conv4_2"
|
329 |
+
type: "Convolution"
|
330 |
+
bottom: "conv4_1"
|
331 |
+
top: "conv4_2"
|
332 |
+
param {
|
333 |
+
lr_mult: 1.0
|
334 |
+
decay_mult: 1
|
335 |
+
}
|
336 |
+
param {
|
337 |
+
lr_mult: 2.0
|
338 |
+
decay_mult: 0
|
339 |
+
}
|
340 |
+
convolution_param {
|
341 |
+
num_output: 512
|
342 |
+
pad: 1
|
343 |
+
kernel_size: 3
|
344 |
+
weight_filler {
|
345 |
+
type: "xavier"
|
346 |
+
}
|
347 |
+
bias_filler {
|
348 |
+
type: "constant"
|
349 |
+
}
|
350 |
+
dilation: 1
|
351 |
+
}
|
352 |
+
}
|
353 |
+
layer {
|
354 |
+
name: "relu4_2"
|
355 |
+
type: "ReLU"
|
356 |
+
bottom: "conv4_2"
|
357 |
+
top: "conv4_2"
|
358 |
+
}
|
359 |
+
layer {
|
360 |
+
name: "conv4_3"
|
361 |
+
type: "Convolution"
|
362 |
+
bottom: "conv4_2"
|
363 |
+
top: "conv4_3"
|
364 |
+
param {
|
365 |
+
lr_mult: 1.0
|
366 |
+
decay_mult: 1
|
367 |
+
}
|
368 |
+
param {
|
369 |
+
lr_mult: 2.0
|
370 |
+
decay_mult: 0
|
371 |
+
}
|
372 |
+
convolution_param {
|
373 |
+
num_output: 512
|
374 |
+
pad: 1
|
375 |
+
kernel_size: 3
|
376 |
+
weight_filler {
|
377 |
+
type: "xavier"
|
378 |
+
}
|
379 |
+
bias_filler {
|
380 |
+
type: "constant"
|
381 |
+
}
|
382 |
+
dilation: 1
|
383 |
+
}
|
384 |
+
}
|
385 |
+
layer {
|
386 |
+
name: "relu4_3"
|
387 |
+
type: "ReLU"
|
388 |
+
bottom: "conv4_3"
|
389 |
+
top: "conv4_3"
|
390 |
+
}
|
391 |
+
layer {
|
392 |
+
name: "conv4_4"
|
393 |
+
type: "Convolution"
|
394 |
+
bottom: "conv4_3"
|
395 |
+
top: "conv4_4"
|
396 |
+
param {
|
397 |
+
lr_mult: 1.0
|
398 |
+
decay_mult: 1
|
399 |
+
}
|
400 |
+
param {
|
401 |
+
lr_mult: 2.0
|
402 |
+
decay_mult: 0
|
403 |
+
}
|
404 |
+
convolution_param {
|
405 |
+
num_output: 512
|
406 |
+
pad: 1
|
407 |
+
kernel_size: 3
|
408 |
+
weight_filler {
|
409 |
+
type: "xavier"
|
410 |
+
}
|
411 |
+
bias_filler {
|
412 |
+
type: "constant"
|
413 |
+
}
|
414 |
+
dilation: 1
|
415 |
+
}
|
416 |
+
}
|
417 |
+
layer {
|
418 |
+
name: "relu4_4"
|
419 |
+
type: "ReLU"
|
420 |
+
bottom: "conv4_4"
|
421 |
+
top: "conv4_4"
|
422 |
+
}
|
423 |
+
layer {
|
424 |
+
name: "conv5_1"
|
425 |
+
type: "Convolution"
|
426 |
+
bottom: "conv4_4"
|
427 |
+
top: "conv5_1"
|
428 |
+
param {
|
429 |
+
lr_mult: 1.0
|
430 |
+
decay_mult: 1
|
431 |
+
}
|
432 |
+
param {
|
433 |
+
lr_mult: 2.0
|
434 |
+
decay_mult: 0
|
435 |
+
}
|
436 |
+
convolution_param {
|
437 |
+
num_output: 512
|
438 |
+
pad: 1
|
439 |
+
kernel_size: 3
|
440 |
+
weight_filler {
|
441 |
+
type: "xavier"
|
442 |
+
}
|
443 |
+
bias_filler {
|
444 |
+
type: "constant"
|
445 |
+
}
|
446 |
+
dilation: 1
|
447 |
+
}
|
448 |
+
}
|
449 |
+
layer {
|
450 |
+
name: "relu5_1"
|
451 |
+
type: "ReLU"
|
452 |
+
bottom: "conv5_1"
|
453 |
+
top: "conv5_1"
|
454 |
+
}
|
455 |
+
layer {
|
456 |
+
name: "conv5_2"
|
457 |
+
type: "Convolution"
|
458 |
+
bottom: "conv5_1"
|
459 |
+
top: "conv5_2"
|
460 |
+
param {
|
461 |
+
lr_mult: 1.0
|
462 |
+
decay_mult: 1
|
463 |
+
}
|
464 |
+
param {
|
465 |
+
lr_mult: 2.0
|
466 |
+
decay_mult: 0
|
467 |
+
}
|
468 |
+
convolution_param {
|
469 |
+
num_output: 512
|
470 |
+
pad: 1
|
471 |
+
kernel_size: 3
|
472 |
+
weight_filler {
|
473 |
+
type: "xavier"
|
474 |
+
}
|
475 |
+
bias_filler {
|
476 |
+
type: "constant"
|
477 |
+
}
|
478 |
+
dilation: 1
|
479 |
+
}
|
480 |
+
}
|
481 |
+
layer {
|
482 |
+
name: "relu5_2"
|
483 |
+
type: "ReLU"
|
484 |
+
bottom: "conv5_2"
|
485 |
+
top: "conv5_2"
|
486 |
+
}
|
487 |
+
layer {
|
488 |
+
name: "conv5_3_CPM"
|
489 |
+
type: "Convolution"
|
490 |
+
bottom: "conv5_2"
|
491 |
+
top: "conv5_3_CPM"
|
492 |
+
param {
|
493 |
+
lr_mult: 1.0
|
494 |
+
decay_mult: 1
|
495 |
+
}
|
496 |
+
param {
|
497 |
+
lr_mult: 2.0
|
498 |
+
decay_mult: 0
|
499 |
+
}
|
500 |
+
convolution_param {
|
501 |
+
num_output: 128
|
502 |
+
pad: 1
|
503 |
+
kernel_size: 3
|
504 |
+
weight_filler {
|
505 |
+
type: "gaussian"
|
506 |
+
std: 0.01
|
507 |
+
}
|
508 |
+
bias_filler {
|
509 |
+
type: "constant"
|
510 |
+
}
|
511 |
+
dilation: 1
|
512 |
+
}
|
513 |
+
}
|
514 |
+
layer {
|
515 |
+
name: "relu5_4_stage1_3"
|
516 |
+
type: "ReLU"
|
517 |
+
bottom: "conv5_3_CPM"
|
518 |
+
top: "conv5_3_CPM"
|
519 |
+
}
|
520 |
+
layer {
|
521 |
+
name: "conv6_1_CPM"
|
522 |
+
type: "Convolution"
|
523 |
+
bottom: "conv5_3_CPM"
|
524 |
+
top: "conv6_1_CPM"
|
525 |
+
param {
|
526 |
+
lr_mult: 1.0
|
527 |
+
decay_mult: 1
|
528 |
+
}
|
529 |
+
param {
|
530 |
+
lr_mult: 2.0
|
531 |
+
decay_mult: 0
|
532 |
+
}
|
533 |
+
convolution_param {
|
534 |
+
num_output: 512
|
535 |
+
pad: 0
|
536 |
+
kernel_size: 1
|
537 |
+
weight_filler {
|
538 |
+
type: "gaussian"
|
539 |
+
std: 0.01
|
540 |
+
}
|
541 |
+
bias_filler {
|
542 |
+
type: "constant"
|
543 |
+
}
|
544 |
+
dilation: 1
|
545 |
+
}
|
546 |
+
}
|
547 |
+
layer {
|
548 |
+
name: "relu6_4_stage1_1"
|
549 |
+
type: "ReLU"
|
550 |
+
bottom: "conv6_1_CPM"
|
551 |
+
top: "conv6_1_CPM"
|
552 |
+
}
|
553 |
+
layer {
|
554 |
+
name: "conv6_2_CPM"
|
555 |
+
type: "Convolution"
|
556 |
+
bottom: "conv6_1_CPM"
|
557 |
+
top: "conv6_2_CPM"
|
558 |
+
param {
|
559 |
+
lr_mult: 1.0
|
560 |
+
decay_mult: 1
|
561 |
+
}
|
562 |
+
param {
|
563 |
+
lr_mult: 2.0
|
564 |
+
decay_mult: 0
|
565 |
+
}
|
566 |
+
convolution_param {
|
567 |
+
num_output: 22
|
568 |
+
pad: 0
|
569 |
+
kernel_size: 1
|
570 |
+
weight_filler {
|
571 |
+
type: "gaussian"
|
572 |
+
std: 0.01
|
573 |
+
}
|
574 |
+
bias_filler {
|
575 |
+
type: "constant"
|
576 |
+
}
|
577 |
+
dilation: 1
|
578 |
+
}
|
579 |
+
}
|
580 |
+
layer {
|
581 |
+
name: "concat_stage2"
|
582 |
+
type: "Concat"
|
583 |
+
bottom: "conv6_2_CPM"
|
584 |
+
bottom: "conv5_3_CPM"
|
585 |
+
top: "concat_stage2"
|
586 |
+
concat_param {
|
587 |
+
axis: 1
|
588 |
+
}
|
589 |
+
}
|
590 |
+
layer {
|
591 |
+
name: "Mconv1_stage2"
|
592 |
+
type: "Convolution"
|
593 |
+
bottom: "concat_stage2"
|
594 |
+
top: "Mconv1_stage2"
|
595 |
+
param {
|
596 |
+
lr_mult: 4.0
|
597 |
+
decay_mult: 1
|
598 |
+
}
|
599 |
+
param {
|
600 |
+
lr_mult: 8.0
|
601 |
+
decay_mult: 0
|
602 |
+
}
|
603 |
+
convolution_param {
|
604 |
+
num_output: 128
|
605 |
+
pad: 3
|
606 |
+
kernel_size: 7
|
607 |
+
weight_filler {
|
608 |
+
type: "gaussian"
|
609 |
+
std: 0.01
|
610 |
+
}
|
611 |
+
bias_filler {
|
612 |
+
type: "constant"
|
613 |
+
}
|
614 |
+
dilation: 1
|
615 |
+
}
|
616 |
+
}
|
617 |
+
layer {
|
618 |
+
name: "Mrelu1_2_stage2_1"
|
619 |
+
type: "ReLU"
|
620 |
+
bottom: "Mconv1_stage2"
|
621 |
+
top: "Mconv1_stage2"
|
622 |
+
}
|
623 |
+
layer {
|
624 |
+
name: "Mconv2_stage2"
|
625 |
+
type: "Convolution"
|
626 |
+
bottom: "Mconv1_stage2"
|
627 |
+
top: "Mconv2_stage2"
|
628 |
+
param {
|
629 |
+
lr_mult: 4.0
|
630 |
+
decay_mult: 1
|
631 |
+
}
|
632 |
+
param {
|
633 |
+
lr_mult: 8.0
|
634 |
+
decay_mult: 0
|
635 |
+
}
|
636 |
+
convolution_param {
|
637 |
+
num_output: 128
|
638 |
+
pad: 3
|
639 |
+
kernel_size: 7
|
640 |
+
weight_filler {
|
641 |
+
type: "gaussian"
|
642 |
+
std: 0.01
|
643 |
+
}
|
644 |
+
bias_filler {
|
645 |
+
type: "constant"
|
646 |
+
}
|
647 |
+
dilation: 1
|
648 |
+
}
|
649 |
+
}
|
650 |
+
layer {
|
651 |
+
name: "Mrelu1_3_stage2_2"
|
652 |
+
type: "ReLU"
|
653 |
+
bottom: "Mconv2_stage2"
|
654 |
+
top: "Mconv2_stage2"
|
655 |
+
}
|
656 |
+
layer {
|
657 |
+
name: "Mconv3_stage2"
|
658 |
+
type: "Convolution"
|
659 |
+
bottom: "Mconv2_stage2"
|
660 |
+
top: "Mconv3_stage2"
|
661 |
+
param {
|
662 |
+
lr_mult: 4.0
|
663 |
+
decay_mult: 1
|
664 |
+
}
|
665 |
+
param {
|
666 |
+
lr_mult: 8.0
|
667 |
+
decay_mult: 0
|
668 |
+
}
|
669 |
+
convolution_param {
|
670 |
+
num_output: 128
|
671 |
+
pad: 3
|
672 |
+
kernel_size: 7
|
673 |
+
weight_filler {
|
674 |
+
type: "gaussian"
|
675 |
+
std: 0.01
|
676 |
+
}
|
677 |
+
bias_filler {
|
678 |
+
type: "constant"
|
679 |
+
}
|
680 |
+
dilation: 1
|
681 |
+
}
|
682 |
+
}
|
683 |
+
layer {
|
684 |
+
name: "Mrelu1_4_stage2_3"
|
685 |
+
type: "ReLU"
|
686 |
+
bottom: "Mconv3_stage2"
|
687 |
+
top: "Mconv3_stage2"
|
688 |
+
}
|
689 |
+
layer {
|
690 |
+
name: "Mconv4_stage2"
|
691 |
+
type: "Convolution"
|
692 |
+
bottom: "Mconv3_stage2"
|
693 |
+
top: "Mconv4_stage2"
|
694 |
+
param {
|
695 |
+
lr_mult: 4.0
|
696 |
+
decay_mult: 1
|
697 |
+
}
|
698 |
+
param {
|
699 |
+
lr_mult: 8.0
|
700 |
+
decay_mult: 0
|
701 |
+
}
|
702 |
+
convolution_param {
|
703 |
+
num_output: 128
|
704 |
+
pad: 3
|
705 |
+
kernel_size: 7
|
706 |
+
weight_filler {
|
707 |
+
type: "gaussian"
|
708 |
+
std: 0.01
|
709 |
+
}
|
710 |
+
bias_filler {
|
711 |
+
type: "constant"
|
712 |
+
}
|
713 |
+
dilation: 1
|
714 |
+
}
|
715 |
+
}
|
716 |
+
layer {
|
717 |
+
name: "Mrelu1_5_stage2_4"
|
718 |
+
type: "ReLU"
|
719 |
+
bottom: "Mconv4_stage2"
|
720 |
+
top: "Mconv4_stage2"
|
721 |
+
}
|
722 |
+
layer {
|
723 |
+
name: "Mconv5_stage2"
|
724 |
+
type: "Convolution"
|
725 |
+
bottom: "Mconv4_stage2"
|
726 |
+
top: "Mconv5_stage2"
|
727 |
+
param {
|
728 |
+
lr_mult: 4.0
|
729 |
+
decay_mult: 1
|
730 |
+
}
|
731 |
+
param {
|
732 |
+
lr_mult: 8.0
|
733 |
+
decay_mult: 0
|
734 |
+
}
|
735 |
+
convolution_param {
|
736 |
+
num_output: 128
|
737 |
+
pad: 3
|
738 |
+
kernel_size: 7
|
739 |
+
weight_filler {
|
740 |
+
type: "gaussian"
|
741 |
+
std: 0.01
|
742 |
+
}
|
743 |
+
bias_filler {
|
744 |
+
type: "constant"
|
745 |
+
}
|
746 |
+
dilation: 1
|
747 |
+
}
|
748 |
+
}
|
749 |
+
layer {
|
750 |
+
name: "Mrelu1_6_stage2_5"
|
751 |
+
type: "ReLU"
|
752 |
+
bottom: "Mconv5_stage2"
|
753 |
+
top: "Mconv5_stage2"
|
754 |
+
}
|
755 |
+
layer {
|
756 |
+
name: "Mconv6_stage2"
|
757 |
+
type: "Convolution"
|
758 |
+
bottom: "Mconv5_stage2"
|
759 |
+
top: "Mconv6_stage2"
|
760 |
+
param {
|
761 |
+
lr_mult: 4.0
|
762 |
+
decay_mult: 1
|
763 |
+
}
|
764 |
+
param {
|
765 |
+
lr_mult: 8.0
|
766 |
+
decay_mult: 0
|
767 |
+
}
|
768 |
+
convolution_param {
|
769 |
+
num_output: 128
|
770 |
+
pad: 0
|
771 |
+
kernel_size: 1
|
772 |
+
weight_filler {
|
773 |
+
type: "gaussian"
|
774 |
+
std: 0.01
|
775 |
+
}
|
776 |
+
bias_filler {
|
777 |
+
type: "constant"
|
778 |
+
}
|
779 |
+
dilation: 1
|
780 |
+
}
|
781 |
+
}
|
782 |
+
layer {
|
783 |
+
name: "Mrelu1_7_stage2_6"
|
784 |
+
type: "ReLU"
|
785 |
+
bottom: "Mconv6_stage2"
|
786 |
+
top: "Mconv6_stage2"
|
787 |
+
}
|
788 |
+
layer {
|
789 |
+
name: "Mconv7_stage2"
|
790 |
+
type: "Convolution"
|
791 |
+
bottom: "Mconv6_stage2"
|
792 |
+
top: "Mconv7_stage2"
|
793 |
+
param {
|
794 |
+
lr_mult: 4.0
|
795 |
+
decay_mult: 1
|
796 |
+
}
|
797 |
+
param {
|
798 |
+
lr_mult: 8.0
|
799 |
+
decay_mult: 0
|
800 |
+
}
|
801 |
+
convolution_param {
|
802 |
+
num_output: 22
|
803 |
+
pad: 0
|
804 |
+
kernel_size: 1
|
805 |
+
weight_filler {
|
806 |
+
type: "gaussian"
|
807 |
+
std: 0.01
|
808 |
+
}
|
809 |
+
bias_filler {
|
810 |
+
type: "constant"
|
811 |
+
}
|
812 |
+
dilation: 1
|
813 |
+
}
|
814 |
+
}
|
815 |
+
layer {
|
816 |
+
name: "concat_stage3"
|
817 |
+
type: "Concat"
|
818 |
+
bottom: "Mconv7_stage2"
|
819 |
+
bottom: "conv5_3_CPM"
|
820 |
+
top: "concat_stage3"
|
821 |
+
concat_param {
|
822 |
+
axis: 1
|
823 |
+
}
|
824 |
+
}
|
825 |
+
layer {
|
826 |
+
name: "Mconv1_stage3"
|
827 |
+
type: "Convolution"
|
828 |
+
bottom: "concat_stage3"
|
829 |
+
top: "Mconv1_stage3"
|
830 |
+
param {
|
831 |
+
lr_mult: 4.0
|
832 |
+
decay_mult: 1
|
833 |
+
}
|
834 |
+
param {
|
835 |
+
lr_mult: 8.0
|
836 |
+
decay_mult: 0
|
837 |
+
}
|
838 |
+
convolution_param {
|
839 |
+
num_output: 128
|
840 |
+
pad: 3
|
841 |
+
kernel_size: 7
|
842 |
+
weight_filler {
|
843 |
+
type: "gaussian"
|
844 |
+
std: 0.01
|
845 |
+
}
|
846 |
+
bias_filler {
|
847 |
+
type: "constant"
|
848 |
+
}
|
849 |
+
dilation: 1
|
850 |
+
}
|
851 |
+
}
|
852 |
+
layer {
|
853 |
+
name: "Mrelu1_2_stage3_1"
|
854 |
+
type: "ReLU"
|
855 |
+
bottom: "Mconv1_stage3"
|
856 |
+
top: "Mconv1_stage3"
|
857 |
+
}
|
858 |
+
layer {
|
859 |
+
name: "Mconv2_stage3"
|
860 |
+
type: "Convolution"
|
861 |
+
bottom: "Mconv1_stage3"
|
862 |
+
top: "Mconv2_stage3"
|
863 |
+
param {
|
864 |
+
lr_mult: 4.0
|
865 |
+
decay_mult: 1
|
866 |
+
}
|
867 |
+
param {
|
868 |
+
lr_mult: 8.0
|
869 |
+
decay_mult: 0
|
870 |
+
}
|
871 |
+
convolution_param {
|
872 |
+
num_output: 128
|
873 |
+
pad: 3
|
874 |
+
kernel_size: 7
|
875 |
+
weight_filler {
|
876 |
+
type: "gaussian"
|
877 |
+
std: 0.01
|
878 |
+
}
|
879 |
+
bias_filler {
|
880 |
+
type: "constant"
|
881 |
+
}
|
882 |
+
dilation: 1
|
883 |
+
}
|
884 |
+
}
|
885 |
+
layer {
|
886 |
+
name: "Mrelu1_3_stage3_2"
|
887 |
+
type: "ReLU"
|
888 |
+
bottom: "Mconv2_stage3"
|
889 |
+
top: "Mconv2_stage3"
|
890 |
+
}
|
891 |
+
layer {
|
892 |
+
name: "Mconv3_stage3"
|
893 |
+
type: "Convolution"
|
894 |
+
bottom: "Mconv2_stage3"
|
895 |
+
top: "Mconv3_stage3"
|
896 |
+
param {
|
897 |
+
lr_mult: 4.0
|
898 |
+
decay_mult: 1
|
899 |
+
}
|
900 |
+
param {
|
901 |
+
lr_mult: 8.0
|
902 |
+
decay_mult: 0
|
903 |
+
}
|
904 |
+
convolution_param {
|
905 |
+
num_output: 128
|
906 |
+
pad: 3
|
907 |
+
kernel_size: 7
|
908 |
+
weight_filler {
|
909 |
+
type: "gaussian"
|
910 |
+
std: 0.01
|
911 |
+
}
|
912 |
+
bias_filler {
|
913 |
+
type: "constant"
|
914 |
+
}
|
915 |
+
dilation: 1
|
916 |
+
}
|
917 |
+
}
|
918 |
+
layer {
|
919 |
+
name: "Mrelu1_4_stage3_3"
|
920 |
+
type: "ReLU"
|
921 |
+
bottom: "Mconv3_stage3"
|
922 |
+
top: "Mconv3_stage3"
|
923 |
+
}
|
924 |
+
layer {
|
925 |
+
name: "Mconv4_stage3"
|
926 |
+
type: "Convolution"
|
927 |
+
bottom: "Mconv3_stage3"
|
928 |
+
top: "Mconv4_stage3"
|
929 |
+
param {
|
930 |
+
lr_mult: 4.0
|
931 |
+
decay_mult: 1
|
932 |
+
}
|
933 |
+
param {
|
934 |
+
lr_mult: 8.0
|
935 |
+
decay_mult: 0
|
936 |
+
}
|
937 |
+
convolution_param {
|
938 |
+
num_output: 128
|
939 |
+
pad: 3
|
940 |
+
kernel_size: 7
|
941 |
+
weight_filler {
|
942 |
+
type: "gaussian"
|
943 |
+
std: 0.01
|
944 |
+
}
|
945 |
+
bias_filler {
|
946 |
+
type: "constant"
|
947 |
+
}
|
948 |
+
dilation: 1
|
949 |
+
}
|
950 |
+
}
|
951 |
+
layer {
|
952 |
+
name: "Mrelu1_5_stage3_4"
|
953 |
+
type: "ReLU"
|
954 |
+
bottom: "Mconv4_stage3"
|
955 |
+
top: "Mconv4_stage3"
|
956 |
+
}
|
957 |
+
layer {
|
958 |
+
name: "Mconv5_stage3"
|
959 |
+
type: "Convolution"
|
960 |
+
bottom: "Mconv4_stage3"
|
961 |
+
top: "Mconv5_stage3"
|
962 |
+
param {
|
963 |
+
lr_mult: 4.0
|
964 |
+
decay_mult: 1
|
965 |
+
}
|
966 |
+
param {
|
967 |
+
lr_mult: 8.0
|
968 |
+
decay_mult: 0
|
969 |
+
}
|
970 |
+
convolution_param {
|
971 |
+
num_output: 128
|
972 |
+
pad: 3
|
973 |
+
kernel_size: 7
|
974 |
+
weight_filler {
|
975 |
+
type: "gaussian"
|
976 |
+
std: 0.01
|
977 |
+
}
|
978 |
+
bias_filler {
|
979 |
+
type: "constant"
|
980 |
+
}
|
981 |
+
dilation: 1
|
982 |
+
}
|
983 |
+
}
|
984 |
+
layer {
|
985 |
+
name: "Mrelu1_6_stage3_5"
|
986 |
+
type: "ReLU"
|
987 |
+
bottom: "Mconv5_stage3"
|
988 |
+
top: "Mconv5_stage3"
|
989 |
+
}
|
990 |
+
layer {
|
991 |
+
name: "Mconv6_stage3"
|
992 |
+
type: "Convolution"
|
993 |
+
bottom: "Mconv5_stage3"
|
994 |
+
top: "Mconv6_stage3"
|
995 |
+
param {
|
996 |
+
lr_mult: 4.0
|
997 |
+
decay_mult: 1
|
998 |
+
}
|
999 |
+
param {
|
1000 |
+
lr_mult: 8.0
|
1001 |
+
decay_mult: 0
|
1002 |
+
}
|
1003 |
+
convolution_param {
|
1004 |
+
num_output: 128
|
1005 |
+
pad: 0
|
1006 |
+
kernel_size: 1
|
1007 |
+
weight_filler {
|
1008 |
+
type: "gaussian"
|
1009 |
+
std: 0.01
|
1010 |
+
}
|
1011 |
+
bias_filler {
|
1012 |
+
type: "constant"
|
1013 |
+
}
|
1014 |
+
dilation: 1
|
1015 |
+
}
|
1016 |
+
}
|
1017 |
+
layer {
|
1018 |
+
name: "Mrelu1_7_stage3_6"
|
1019 |
+
type: "ReLU"
|
1020 |
+
bottom: "Mconv6_stage3"
|
1021 |
+
top: "Mconv6_stage3"
|
1022 |
+
}
|
1023 |
+
layer {
|
1024 |
+
name: "Mconv7_stage3"
|
1025 |
+
type: "Convolution"
|
1026 |
+
bottom: "Mconv6_stage3"
|
1027 |
+
top: "Mconv7_stage3"
|
1028 |
+
param {
|
1029 |
+
lr_mult: 4.0
|
1030 |
+
decay_mult: 1
|
1031 |
+
}
|
1032 |
+
param {
|
1033 |
+
lr_mult: 8.0
|
1034 |
+
decay_mult: 0
|
1035 |
+
}
|
1036 |
+
convolution_param {
|
1037 |
+
num_output: 22
|
1038 |
+
pad: 0
|
1039 |
+
kernel_size: 1
|
1040 |
+
weight_filler {
|
1041 |
+
type: "gaussian"
|
1042 |
+
std: 0.01
|
1043 |
+
}
|
1044 |
+
bias_filler {
|
1045 |
+
type: "constant"
|
1046 |
+
}
|
1047 |
+
dilation: 1
|
1048 |
+
}
|
1049 |
+
}
|
1050 |
+
layer {
|
1051 |
+
name: "concat_stage4"
|
1052 |
+
type: "Concat"
|
1053 |
+
bottom: "Mconv7_stage3"
|
1054 |
+
bottom: "conv5_3_CPM"
|
1055 |
+
top: "concat_stage4"
|
1056 |
+
concat_param {
|
1057 |
+
axis: 1
|
1058 |
+
}
|
1059 |
+
}
|
1060 |
+
layer {
|
1061 |
+
name: "Mconv1_stage4"
|
1062 |
+
type: "Convolution"
|
1063 |
+
bottom: "concat_stage4"
|
1064 |
+
top: "Mconv1_stage4"
|
1065 |
+
param {
|
1066 |
+
lr_mult: 4.0
|
1067 |
+
decay_mult: 1
|
1068 |
+
}
|
1069 |
+
param {
|
1070 |
+
lr_mult: 8.0
|
1071 |
+
decay_mult: 0
|
1072 |
+
}
|
1073 |
+
convolution_param {
|
1074 |
+
num_output: 128
|
1075 |
+
pad: 3
|
1076 |
+
kernel_size: 7
|
1077 |
+
weight_filler {
|
1078 |
+
type: "gaussian"
|
1079 |
+
std: 0.01
|
1080 |
+
}
|
1081 |
+
bias_filler {
|
1082 |
+
type: "constant"
|
1083 |
+
}
|
1084 |
+
dilation: 1
|
1085 |
+
}
|
1086 |
+
}
|
1087 |
+
layer {
|
1088 |
+
name: "Mrelu1_2_stage4_1"
|
1089 |
+
type: "ReLU"
|
1090 |
+
bottom: "Mconv1_stage4"
|
1091 |
+
top: "Mconv1_stage4"
|
1092 |
+
}
|
1093 |
+
layer {
|
1094 |
+
name: "Mconv2_stage4"
|
1095 |
+
type: "Convolution"
|
1096 |
+
bottom: "Mconv1_stage4"
|
1097 |
+
top: "Mconv2_stage4"
|
1098 |
+
param {
|
1099 |
+
lr_mult: 4.0
|
1100 |
+
decay_mult: 1
|
1101 |
+
}
|
1102 |
+
param {
|
1103 |
+
lr_mult: 8.0
|
1104 |
+
decay_mult: 0
|
1105 |
+
}
|
1106 |
+
convolution_param {
|
1107 |
+
num_output: 128
|
1108 |
+
pad: 3
|
1109 |
+
kernel_size: 7
|
1110 |
+
weight_filler {
|
1111 |
+
type: "gaussian"
|
1112 |
+
std: 0.01
|
1113 |
+
}
|
1114 |
+
bias_filler {
|
1115 |
+
type: "constant"
|
1116 |
+
}
|
1117 |
+
dilation: 1
|
1118 |
+
}
|
1119 |
+
}
|
1120 |
+
layer {
|
1121 |
+
name: "Mrelu1_3_stage4_2"
|
1122 |
+
type: "ReLU"
|
1123 |
+
bottom: "Mconv2_stage4"
|
1124 |
+
top: "Mconv2_stage4"
|
1125 |
+
}
|
1126 |
+
layer {
|
1127 |
+
name: "Mconv3_stage4"
|
1128 |
+
type: "Convolution"
|
1129 |
+
bottom: "Mconv2_stage4"
|
1130 |
+
top: "Mconv3_stage4"
|
1131 |
+
param {
|
1132 |
+
lr_mult: 4.0
|
1133 |
+
decay_mult: 1
|
1134 |
+
}
|
1135 |
+
param {
|
1136 |
+
lr_mult: 8.0
|
1137 |
+
decay_mult: 0
|
1138 |
+
}
|
1139 |
+
convolution_param {
|
1140 |
+
num_output: 128
|
1141 |
+
pad: 3
|
1142 |
+
kernel_size: 7
|
1143 |
+
weight_filler {
|
1144 |
+
type: "gaussian"
|
1145 |
+
std: 0.01
|
1146 |
+
}
|
1147 |
+
bias_filler {
|
1148 |
+
type: "constant"
|
1149 |
+
}
|
1150 |
+
dilation: 1
|
1151 |
+
}
|
1152 |
+
}
|
1153 |
+
layer {
|
1154 |
+
name: "Mrelu1_4_stage4_3"
|
1155 |
+
type: "ReLU"
|
1156 |
+
bottom: "Mconv3_stage4"
|
1157 |
+
top: "Mconv3_stage4"
|
1158 |
+
}
|
1159 |
+
layer {
|
1160 |
+
name: "Mconv4_stage4"
|
1161 |
+
type: "Convolution"
|
1162 |
+
bottom: "Mconv3_stage4"
|
1163 |
+
top: "Mconv4_stage4"
|
1164 |
+
param {
|
1165 |
+
lr_mult: 4.0
|
1166 |
+
decay_mult: 1
|
1167 |
+
}
|
1168 |
+
param {
|
1169 |
+
lr_mult: 8.0
|
1170 |
+
decay_mult: 0
|
1171 |
+
}
|
1172 |
+
convolution_param {
|
1173 |
+
num_output: 128
|
1174 |
+
pad: 3
|
1175 |
+
kernel_size: 7
|
1176 |
+
weight_filler {
|
1177 |
+
type: "gaussian"
|
1178 |
+
std: 0.01
|
1179 |
+
}
|
1180 |
+
bias_filler {
|
1181 |
+
type: "constant"
|
1182 |
+
}
|
1183 |
+
dilation: 1
|
1184 |
+
}
|
1185 |
+
}
|
1186 |
+
layer {
|
1187 |
+
name: "Mrelu1_5_stage4_4"
|
1188 |
+
type: "ReLU"
|
1189 |
+
bottom: "Mconv4_stage4"
|
1190 |
+
top: "Mconv4_stage4"
|
1191 |
+
}
|
1192 |
+
layer {
|
1193 |
+
name: "Mconv5_stage4"
|
1194 |
+
type: "Convolution"
|
1195 |
+
bottom: "Mconv4_stage4"
|
1196 |
+
top: "Mconv5_stage4"
|
1197 |
+
param {
|
1198 |
+
lr_mult: 4.0
|
1199 |
+
decay_mult: 1
|
1200 |
+
}
|
1201 |
+
param {
|
1202 |
+
lr_mult: 8.0
|
1203 |
+
decay_mult: 0
|
1204 |
+
}
|
1205 |
+
convolution_param {
|
1206 |
+
num_output: 128
|
1207 |
+
pad: 3
|
1208 |
+
kernel_size: 7
|
1209 |
+
weight_filler {
|
1210 |
+
type: "gaussian"
|
1211 |
+
std: 0.01
|
1212 |
+
}
|
1213 |
+
bias_filler {
|
1214 |
+
type: "constant"
|
1215 |
+
}
|
1216 |
+
dilation: 1
|
1217 |
+
}
|
1218 |
+
}
|
1219 |
+
layer {
|
1220 |
+
name: "Mrelu1_6_stage4_5"
|
1221 |
+
type: "ReLU"
|
1222 |
+
bottom: "Mconv5_stage4"
|
1223 |
+
top: "Mconv5_stage4"
|
1224 |
+
}
|
1225 |
+
layer {
|
1226 |
+
name: "Mconv6_stage4"
|
1227 |
+
type: "Convolution"
|
1228 |
+
bottom: "Mconv5_stage4"
|
1229 |
+
top: "Mconv6_stage4"
|
1230 |
+
param {
|
1231 |
+
lr_mult: 4.0
|
1232 |
+
decay_mult: 1
|
1233 |
+
}
|
1234 |
+
param {
|
1235 |
+
lr_mult: 8.0
|
1236 |
+
decay_mult: 0
|
1237 |
+
}
|
1238 |
+
convolution_param {
|
1239 |
+
num_output: 128
|
1240 |
+
pad: 0
|
1241 |
+
kernel_size: 1
|
1242 |
+
weight_filler {
|
1243 |
+
type: "gaussian"
|
1244 |
+
std: 0.01
|
1245 |
+
}
|
1246 |
+
bias_filler {
|
1247 |
+
type: "constant"
|
1248 |
+
}
|
1249 |
+
dilation: 1
|
1250 |
+
}
|
1251 |
+
}
|
1252 |
+
layer {
|
1253 |
+
name: "Mrelu1_7_stage4_6"
|
1254 |
+
type: "ReLU"
|
1255 |
+
bottom: "Mconv6_stage4"
|
1256 |
+
top: "Mconv6_stage4"
|
1257 |
+
}
|
1258 |
+
layer {
|
1259 |
+
name: "Mconv7_stage4"
|
1260 |
+
type: "Convolution"
|
1261 |
+
bottom: "Mconv6_stage4"
|
1262 |
+
top: "Mconv7_stage4"
|
1263 |
+
param {
|
1264 |
+
lr_mult: 4.0
|
1265 |
+
decay_mult: 1
|
1266 |
+
}
|
1267 |
+
param {
|
1268 |
+
lr_mult: 8.0
|
1269 |
+
decay_mult: 0
|
1270 |
+
}
|
1271 |
+
convolution_param {
|
1272 |
+
num_output: 22
|
1273 |
+
pad: 0
|
1274 |
+
kernel_size: 1
|
1275 |
+
weight_filler {
|
1276 |
+
type: "gaussian"
|
1277 |
+
std: 0.01
|
1278 |
+
}
|
1279 |
+
bias_filler {
|
1280 |
+
type: "constant"
|
1281 |
+
}
|
1282 |
+
dilation: 1
|
1283 |
+
}
|
1284 |
+
}
|
1285 |
+
layer {
|
1286 |
+
name: "concat_stage5"
|
1287 |
+
type: "Concat"
|
1288 |
+
bottom: "Mconv7_stage4"
|
1289 |
+
bottom: "conv5_3_CPM"
|
1290 |
+
top: "concat_stage5"
|
1291 |
+
concat_param {
|
1292 |
+
axis: 1
|
1293 |
+
}
|
1294 |
+
}
|
1295 |
+
layer {
|
1296 |
+
name: "Mconv1_stage5"
|
1297 |
+
type: "Convolution"
|
1298 |
+
bottom: "concat_stage5"
|
1299 |
+
top: "Mconv1_stage5"
|
1300 |
+
param {
|
1301 |
+
lr_mult: 4.0
|
1302 |
+
decay_mult: 1
|
1303 |
+
}
|
1304 |
+
param {
|
1305 |
+
lr_mult: 8.0
|
1306 |
+
decay_mult: 0
|
1307 |
+
}
|
1308 |
+
convolution_param {
|
1309 |
+
num_output: 128
|
1310 |
+
pad: 3
|
1311 |
+
kernel_size: 7
|
1312 |
+
weight_filler {
|
1313 |
+
type: "gaussian"
|
1314 |
+
std: 0.01
|
1315 |
+
}
|
1316 |
+
bias_filler {
|
1317 |
+
type: "constant"
|
1318 |
+
}
|
1319 |
+
dilation: 1
|
1320 |
+
}
|
1321 |
+
}
|
1322 |
+
layer {
|
1323 |
+
name: "Mrelu1_2_stage5_1"
|
1324 |
+
type: "ReLU"
|
1325 |
+
bottom: "Mconv1_stage5"
|
1326 |
+
top: "Mconv1_stage5"
|
1327 |
+
}
|
1328 |
+
layer {
|
1329 |
+
name: "Mconv2_stage5"
|
1330 |
+
type: "Convolution"
|
1331 |
+
bottom: "Mconv1_stage5"
|
1332 |
+
top: "Mconv2_stage5"
|
1333 |
+
param {
|
1334 |
+
lr_mult: 4.0
|
1335 |
+
decay_mult: 1
|
1336 |
+
}
|
1337 |
+
param {
|
1338 |
+
lr_mult: 8.0
|
1339 |
+
decay_mult: 0
|
1340 |
+
}
|
1341 |
+
convolution_param {
|
1342 |
+
num_output: 128
|
1343 |
+
pad: 3
|
1344 |
+
kernel_size: 7
|
1345 |
+
weight_filler {
|
1346 |
+
type: "gaussian"
|
1347 |
+
std: 0.01
|
1348 |
+
}
|
1349 |
+
bias_filler {
|
1350 |
+
type: "constant"
|
1351 |
+
}
|
1352 |
+
dilation: 1
|
1353 |
+
}
|
1354 |
+
}
|
1355 |
+
layer {
|
1356 |
+
name: "Mrelu1_3_stage5_2"
|
1357 |
+
type: "ReLU"
|
1358 |
+
bottom: "Mconv2_stage5"
|
1359 |
+
top: "Mconv2_stage5"
|
1360 |
+
}
|
1361 |
+
layer {
|
1362 |
+
name: "Mconv3_stage5"
|
1363 |
+
type: "Convolution"
|
1364 |
+
bottom: "Mconv2_stage5"
|
1365 |
+
top: "Mconv3_stage5"
|
1366 |
+
param {
|
1367 |
+
lr_mult: 4.0
|
1368 |
+
decay_mult: 1
|
1369 |
+
}
|
1370 |
+
param {
|
1371 |
+
lr_mult: 8.0
|
1372 |
+
decay_mult: 0
|
1373 |
+
}
|
1374 |
+
convolution_param {
|
1375 |
+
num_output: 128
|
1376 |
+
pad: 3
|
1377 |
+
kernel_size: 7
|
1378 |
+
weight_filler {
|
1379 |
+
type: "gaussian"
|
1380 |
+
std: 0.01
|
1381 |
+
}
|
1382 |
+
bias_filler {
|
1383 |
+
type: "constant"
|
1384 |
+
}
|
1385 |
+
dilation: 1
|
1386 |
+
}
|
1387 |
+
}
|
1388 |
+
layer {
|
1389 |
+
name: "Mrelu1_4_stage5_3"
|
1390 |
+
type: "ReLU"
|
1391 |
+
bottom: "Mconv3_stage5"
|
1392 |
+
top: "Mconv3_stage5"
|
1393 |
+
}
|
1394 |
+
layer {
|
1395 |
+
name: "Mconv4_stage5"
|
1396 |
+
type: "Convolution"
|
1397 |
+
bottom: "Mconv3_stage5"
|
1398 |
+
top: "Mconv4_stage5"
|
1399 |
+
param {
|
1400 |
+
lr_mult: 4.0
|
1401 |
+
decay_mult: 1
|
1402 |
+
}
|
1403 |
+
param {
|
1404 |
+
lr_mult: 8.0
|
1405 |
+
decay_mult: 0
|
1406 |
+
}
|
1407 |
+
convolution_param {
|
1408 |
+
num_output: 128
|
1409 |
+
pad: 3
|
1410 |
+
kernel_size: 7
|
1411 |
+
weight_filler {
|
1412 |
+
type: "gaussian"
|
1413 |
+
std: 0.01
|
1414 |
+
}
|
1415 |
+
bias_filler {
|
1416 |
+
type: "constant"
|
1417 |
+
}
|
1418 |
+
dilation: 1
|
1419 |
+
}
|
1420 |
+
}
|
1421 |
+
layer {
|
1422 |
+
name: "Mrelu1_5_stage5_4"
|
1423 |
+
type: "ReLU"
|
1424 |
+
bottom: "Mconv4_stage5"
|
1425 |
+
top: "Mconv4_stage5"
|
1426 |
+
}
|
1427 |
+
layer {
|
1428 |
+
name: "Mconv5_stage5"
|
1429 |
+
type: "Convolution"
|
1430 |
+
bottom: "Mconv4_stage5"
|
1431 |
+
top: "Mconv5_stage5"
|
1432 |
+
param {
|
1433 |
+
lr_mult: 4.0
|
1434 |
+
decay_mult: 1
|
1435 |
+
}
|
1436 |
+
param {
|
1437 |
+
lr_mult: 8.0
|
1438 |
+
decay_mult: 0
|
1439 |
+
}
|
1440 |
+
convolution_param {
|
1441 |
+
num_output: 128
|
1442 |
+
pad: 3
|
1443 |
+
kernel_size: 7
|
1444 |
+
weight_filler {
|
1445 |
+
type: "gaussian"
|
1446 |
+
std: 0.01
|
1447 |
+
}
|
1448 |
+
bias_filler {
|
1449 |
+
type: "constant"
|
1450 |
+
}
|
1451 |
+
dilation: 1
|
1452 |
+
}
|
1453 |
+
}
|
1454 |
+
layer {
|
1455 |
+
name: "Mrelu1_6_stage5_5"
|
1456 |
+
type: "ReLU"
|
1457 |
+
bottom: "Mconv5_stage5"
|
1458 |
+
top: "Mconv5_stage5"
|
1459 |
+
}
|
1460 |
+
layer {
|
1461 |
+
name: "Mconv6_stage5"
|
1462 |
+
type: "Convolution"
|
1463 |
+
bottom: "Mconv5_stage5"
|
1464 |
+
top: "Mconv6_stage5"
|
1465 |
+
param {
|
1466 |
+
lr_mult: 4.0
|
1467 |
+
decay_mult: 1
|
1468 |
+
}
|
1469 |
+
param {
|
1470 |
+
lr_mult: 8.0
|
1471 |
+
decay_mult: 0
|
1472 |
+
}
|
1473 |
+
convolution_param {
|
1474 |
+
num_output: 128
|
1475 |
+
pad: 0
|
1476 |
+
kernel_size: 1
|
1477 |
+
weight_filler {
|
1478 |
+
type: "gaussian"
|
1479 |
+
std: 0.01
|
1480 |
+
}
|
1481 |
+
bias_filler {
|
1482 |
+
type: "constant"
|
1483 |
+
}
|
1484 |
+
dilation: 1
|
1485 |
+
}
|
1486 |
+
}
|
1487 |
+
layer {
|
1488 |
+
name: "Mrelu1_7_stage5_6"
|
1489 |
+
type: "ReLU"
|
1490 |
+
bottom: "Mconv6_stage5"
|
1491 |
+
top: "Mconv6_stage5"
|
1492 |
+
}
|
1493 |
+
layer {
|
1494 |
+
name: "Mconv7_stage5"
|
1495 |
+
type: "Convolution"
|
1496 |
+
bottom: "Mconv6_stage5"
|
1497 |
+
top: "Mconv7_stage5"
|
1498 |
+
param {
|
1499 |
+
lr_mult: 4.0
|
1500 |
+
decay_mult: 1
|
1501 |
+
}
|
1502 |
+
param {
|
1503 |
+
lr_mult: 8.0
|
1504 |
+
decay_mult: 0
|
1505 |
+
}
|
1506 |
+
convolution_param {
|
1507 |
+
num_output: 22
|
1508 |
+
pad: 0
|
1509 |
+
kernel_size: 1
|
1510 |
+
weight_filler {
|
1511 |
+
type: "gaussian"
|
1512 |
+
std: 0.01
|
1513 |
+
}
|
1514 |
+
bias_filler {
|
1515 |
+
type: "constant"
|
1516 |
+
}
|
1517 |
+
dilation: 1
|
1518 |
+
}
|
1519 |
+
}
|
1520 |
+
layer {
|
1521 |
+
name: "concat_stage6"
|
1522 |
+
type: "Concat"
|
1523 |
+
bottom: "Mconv7_stage5"
|
1524 |
+
bottom: "conv5_3_CPM"
|
1525 |
+
top: "concat_stage6"
|
1526 |
+
concat_param {
|
1527 |
+
axis: 1
|
1528 |
+
}
|
1529 |
+
}
|
1530 |
+
layer {
|
1531 |
+
name: "Mconv1_stage6"
|
1532 |
+
type: "Convolution"
|
1533 |
+
bottom: "concat_stage6"
|
1534 |
+
top: "Mconv1_stage6"
|
1535 |
+
param {
|
1536 |
+
lr_mult: 4.0
|
1537 |
+
decay_mult: 1
|
1538 |
+
}
|
1539 |
+
param {
|
1540 |
+
lr_mult: 8.0
|
1541 |
+
decay_mult: 0
|
1542 |
+
}
|
1543 |
+
convolution_param {
|
1544 |
+
num_output: 128
|
1545 |
+
pad: 3
|
1546 |
+
kernel_size: 7
|
1547 |
+
weight_filler {
|
1548 |
+
type: "gaussian"
|
1549 |
+
std: 0.01
|
1550 |
+
}
|
1551 |
+
bias_filler {
|
1552 |
+
type: "constant"
|
1553 |
+
}
|
1554 |
+
dilation: 1
|
1555 |
+
}
|
1556 |
+
}
|
1557 |
+
layer {
|
1558 |
+
name: "Mrelu1_2_stage6_1"
|
1559 |
+
type: "ReLU"
|
1560 |
+
bottom: "Mconv1_stage6"
|
1561 |
+
top: "Mconv1_stage6"
|
1562 |
+
}
|
1563 |
+
layer {
|
1564 |
+
name: "Mconv2_stage6"
|
1565 |
+
type: "Convolution"
|
1566 |
+
bottom: "Mconv1_stage6"
|
1567 |
+
top: "Mconv2_stage6"
|
1568 |
+
param {
|
1569 |
+
lr_mult: 4.0
|
1570 |
+
decay_mult: 1
|
1571 |
+
}
|
1572 |
+
param {
|
1573 |
+
lr_mult: 8.0
|
1574 |
+
decay_mult: 0
|
1575 |
+
}
|
1576 |
+
convolution_param {
|
1577 |
+
num_output: 128
|
1578 |
+
pad: 3
|
1579 |
+
kernel_size: 7
|
1580 |
+
weight_filler {
|
1581 |
+
type: "gaussian"
|
1582 |
+
std: 0.01
|
1583 |
+
}
|
1584 |
+
bias_filler {
|
1585 |
+
type: "constant"
|
1586 |
+
}
|
1587 |
+
dilation: 1
|
1588 |
+
}
|
1589 |
+
}
|
1590 |
+
layer {
|
1591 |
+
name: "Mrelu1_3_stage6_2"
|
1592 |
+
type: "ReLU"
|
1593 |
+
bottom: "Mconv2_stage6"
|
1594 |
+
top: "Mconv2_stage6"
|
1595 |
+
}
|
1596 |
+
layer {
|
1597 |
+
name: "Mconv3_stage6"
|
1598 |
+
type: "Convolution"
|
1599 |
+
bottom: "Mconv2_stage6"
|
1600 |
+
top: "Mconv3_stage6"
|
1601 |
+
param {
|
1602 |
+
lr_mult: 4.0
|
1603 |
+
decay_mult: 1
|
1604 |
+
}
|
1605 |
+
param {
|
1606 |
+
lr_mult: 8.0
|
1607 |
+
decay_mult: 0
|
1608 |
+
}
|
1609 |
+
convolution_param {
|
1610 |
+
num_output: 128
|
1611 |
+
pad: 3
|
1612 |
+
kernel_size: 7
|
1613 |
+
weight_filler {
|
1614 |
+
type: "gaussian"
|
1615 |
+
std: 0.01
|
1616 |
+
}
|
1617 |
+
bias_filler {
|
1618 |
+
type: "constant"
|
1619 |
+
}
|
1620 |
+
dilation: 1
|
1621 |
+
}
|
1622 |
+
}
|
1623 |
+
layer {
|
1624 |
+
name: "Mrelu1_4_stage6_3"
|
1625 |
+
type: "ReLU"
|
1626 |
+
bottom: "Mconv3_stage6"
|
1627 |
+
top: "Mconv3_stage6"
|
1628 |
+
}
|
1629 |
+
layer {
|
1630 |
+
name: "Mconv4_stage6"
|
1631 |
+
type: "Convolution"
|
1632 |
+
bottom: "Mconv3_stage6"
|
1633 |
+
top: "Mconv4_stage6"
|
1634 |
+
param {
|
1635 |
+
lr_mult: 4.0
|
1636 |
+
decay_mult: 1
|
1637 |
+
}
|
1638 |
+
param {
|
1639 |
+
lr_mult: 8.0
|
1640 |
+
decay_mult: 0
|
1641 |
+
}
|
1642 |
+
convolution_param {
|
1643 |
+
num_output: 128
|
1644 |
+
pad: 3
|
1645 |
+
kernel_size: 7
|
1646 |
+
weight_filler {
|
1647 |
+
type: "gaussian"
|
1648 |
+
std: 0.01
|
1649 |
+
}
|
1650 |
+
bias_filler {
|
1651 |
+
type: "constant"
|
1652 |
+
}
|
1653 |
+
dilation: 1
|
1654 |
+
}
|
1655 |
+
}
|
1656 |
+
layer {
|
1657 |
+
name: "Mrelu1_5_stage6_4"
|
1658 |
+
type: "ReLU"
|
1659 |
+
bottom: "Mconv4_stage6"
|
1660 |
+
top: "Mconv4_stage6"
|
1661 |
+
}
|
1662 |
+
layer {
|
1663 |
+
name: "Mconv5_stage6"
|
1664 |
+
type: "Convolution"
|
1665 |
+
bottom: "Mconv4_stage6"
|
1666 |
+
top: "Mconv5_stage6"
|
1667 |
+
param {
|
1668 |
+
lr_mult: 4.0
|
1669 |
+
decay_mult: 1
|
1670 |
+
}
|
1671 |
+
param {
|
1672 |
+
lr_mult: 8.0
|
1673 |
+
decay_mult: 0
|
1674 |
+
}
|
1675 |
+
convolution_param {
|
1676 |
+
num_output: 128
|
1677 |
+
pad: 3
|
1678 |
+
kernel_size: 7
|
1679 |
+
weight_filler {
|
1680 |
+
type: "gaussian"
|
1681 |
+
std: 0.01
|
1682 |
+
}
|
1683 |
+
bias_filler {
|
1684 |
+
type: "constant"
|
1685 |
+
}
|
1686 |
+
dilation: 1
|
1687 |
+
}
|
1688 |
+
}
|
1689 |
+
layer {
|
1690 |
+
name: "Mrelu1_6_stage6_5"
|
1691 |
+
type: "ReLU"
|
1692 |
+
bottom: "Mconv5_stage6"
|
1693 |
+
top: "Mconv5_stage6"
|
1694 |
+
}
|
1695 |
+
layer {
|
1696 |
+
name: "Mconv6_stage6"
|
1697 |
+
type: "Convolution"
|
1698 |
+
bottom: "Mconv5_stage6"
|
1699 |
+
top: "Mconv6_stage6"
|
1700 |
+
param {
|
1701 |
+
lr_mult: 4.0
|
1702 |
+
decay_mult: 1
|
1703 |
+
}
|
1704 |
+
param {
|
1705 |
+
lr_mult: 8.0
|
1706 |
+
decay_mult: 0
|
1707 |
+
}
|
1708 |
+
convolution_param {
|
1709 |
+
num_output: 128
|
1710 |
+
pad: 0
|
1711 |
+
kernel_size: 1
|
1712 |
+
weight_filler {
|
1713 |
+
type: "gaussian"
|
1714 |
+
std: 0.01
|
1715 |
+
}
|
1716 |
+
bias_filler {
|
1717 |
+
type: "constant"
|
1718 |
+
}
|
1719 |
+
dilation: 1
|
1720 |
+
}
|
1721 |
+
}
|
1722 |
+
layer {
|
1723 |
+
name: "Mrelu1_7_stage6_6"
|
1724 |
+
type: "ReLU"
|
1725 |
+
bottom: "Mconv6_stage6"
|
1726 |
+
top: "Mconv6_stage6"
|
1727 |
+
}
|
1728 |
+
layer {
|
1729 |
+
name: "Mconv7_stage6"
|
1730 |
+
type: "Convolution"
|
1731 |
+
bottom: "Mconv6_stage6"
|
1732 |
+
# top: "Mconv7_stage6"
|
1733 |
+
top: "net_output"
|
1734 |
+
param {
|
1735 |
+
lr_mult: 4.0
|
1736 |
+
decay_mult: 1
|
1737 |
+
}
|
1738 |
+
param {
|
1739 |
+
lr_mult: 8.0
|
1740 |
+
decay_mult: 0
|
1741 |
+
}
|
1742 |
+
convolution_param {
|
1743 |
+
num_output: 22
|
1744 |
+
pad: 0
|
1745 |
+
kernel_size: 1
|
1746 |
+
weight_filler {
|
1747 |
+
type: "gaussian"
|
1748 |
+
std: 0.01
|
1749 |
+
}
|
1750 |
+
bias_filler {
|
1751 |
+
type: "constant"
|
1752 |
+
}
|
1753 |
+
dilation: 1
|
1754 |
+
}
|
1755 |
+
}
|
1756 |
+
|
out.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
matplotlib
|
3 |
+
opencv-python
|
4 |
+
scipy
|
5 |
+
scikit-image
|
6 |
+
tqdm
|
src/__init__.py
ADDED
File without changes
|
src/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (140 Bytes). View file
|
|
src/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (144 Bytes). View file
|
|
src/__pycache__/body.cpython-37.pyc
ADDED
Binary file (7.3 kB). View file
|
|
src/__pycache__/body.cpython-38.pyc
ADDED
Binary file (7.32 kB). View file
|
|
src/__pycache__/hand.cpython-37.pyc
ADDED
Binary file (3.04 kB). View file
|
|
src/__pycache__/hand.cpython-38.pyc
ADDED
Binary file (3.05 kB). View file
|
|
src/__pycache__/model.cpython-37.pyc
ADDED
Binary file (6.03 kB). View file
|
|
src/__pycache__/model.cpython-38.pyc
ADDED
Binary file (6.05 kB). View file
|
|
src/__pycache__/util.cpython-37.pyc
ADDED
Binary file (6.19 kB). View file
|
|
src/__pycache__/util.cpython-38.pyc
ADDED
Binary file (6.24 kB). View file
|
|
src/body.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
from scipy.ndimage.filters import gaussian_filter
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import matplotlib
|
8 |
+
import torch
|
9 |
+
from torchvision import transforms
|
10 |
+
|
11 |
+
from src import util
|
12 |
+
from src.model import bodypose_model
|
13 |
+
|
14 |
+
class Body(object):
|
15 |
+
def __init__(self, model_path):
|
16 |
+
self.model = bodypose_model()
|
17 |
+
if torch.cuda.is_available():
|
18 |
+
self.model = self.model.cuda()
|
19 |
+
model_dict = util.transfer(self.model, torch.load(model_path))
|
20 |
+
self.model.load_state_dict(model_dict)
|
21 |
+
self.model.eval()
|
22 |
+
|
23 |
+
def __call__(self, oriImg):
|
24 |
+
# scale_search = [0.5, 1.0, 1.5, 2.0]
|
25 |
+
scale_search = [0.5]
|
26 |
+
boxsize = 368
|
27 |
+
stride = 8
|
28 |
+
padValue = 128
|
29 |
+
thre1 = 0.1
|
30 |
+
thre2 = 0.05
|
31 |
+
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
|
32 |
+
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
|
33 |
+
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
|
34 |
+
|
35 |
+
for m in range(len(multiplier)):
|
36 |
+
scale = multiplier[m]
|
37 |
+
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
38 |
+
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
|
39 |
+
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
|
40 |
+
im = np.ascontiguousarray(im)
|
41 |
+
|
42 |
+
data = torch.from_numpy(im).float()
|
43 |
+
if torch.cuda.is_available():
|
44 |
+
data = data.cuda()
|
45 |
+
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
|
46 |
+
with torch.no_grad():
|
47 |
+
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
|
48 |
+
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
|
49 |
+
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
|
50 |
+
|
51 |
+
# extract outputs, resize, and remove padding
|
52 |
+
# heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps
|
53 |
+
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps
|
54 |
+
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
55 |
+
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
56 |
+
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
57 |
+
|
58 |
+
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
|
59 |
+
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs
|
60 |
+
paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
61 |
+
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
62 |
+
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
63 |
+
|
64 |
+
heatmap_avg += heatmap_avg + heatmap / len(multiplier)
|
65 |
+
paf_avg += + paf / len(multiplier)
|
66 |
+
|
67 |
+
all_peaks = []
|
68 |
+
peak_counter = 0
|
69 |
+
|
70 |
+
for part in range(18):
|
71 |
+
map_ori = heatmap_avg[:, :, part]
|
72 |
+
one_heatmap = gaussian_filter(map_ori, sigma=3)
|
73 |
+
|
74 |
+
map_left = np.zeros(one_heatmap.shape)
|
75 |
+
map_left[1:, :] = one_heatmap[:-1, :]
|
76 |
+
map_right = np.zeros(one_heatmap.shape)
|
77 |
+
map_right[:-1, :] = one_heatmap[1:, :]
|
78 |
+
map_up = np.zeros(one_heatmap.shape)
|
79 |
+
map_up[:, 1:] = one_heatmap[:, :-1]
|
80 |
+
map_down = np.zeros(one_heatmap.shape)
|
81 |
+
map_down[:, :-1] = one_heatmap[:, 1:]
|
82 |
+
|
83 |
+
peaks_binary = np.logical_and.reduce(
|
84 |
+
(one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1))
|
85 |
+
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
|
86 |
+
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
|
87 |
+
peak_id = range(peak_counter, peak_counter + len(peaks))
|
88 |
+
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]
|
89 |
+
|
90 |
+
all_peaks.append(peaks_with_score_and_id)
|
91 |
+
peak_counter += len(peaks)
|
92 |
+
|
93 |
+
# find connection in the specified sequence, center 29 is in the position 15
|
94 |
+
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
95 |
+
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
96 |
+
[1, 16], [16, 18], [3, 17], [6, 18]]
|
97 |
+
# the middle joints heatmap correpondence
|
98 |
+
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
|
99 |
+
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
|
100 |
+
[55, 56], [37, 38], [45, 46]]
|
101 |
+
|
102 |
+
connection_all = []
|
103 |
+
special_k = []
|
104 |
+
mid_num = 10
|
105 |
+
|
106 |
+
for k in range(len(mapIdx)):
|
107 |
+
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
|
108 |
+
candA = all_peaks[limbSeq[k][0] - 1]
|
109 |
+
candB = all_peaks[limbSeq[k][1] - 1]
|
110 |
+
nA = len(candA)
|
111 |
+
nB = len(candB)
|
112 |
+
indexA, indexB = limbSeq[k]
|
113 |
+
if (nA != 0 and nB != 0):
|
114 |
+
connection_candidate = []
|
115 |
+
for i in range(nA):
|
116 |
+
for j in range(nB):
|
117 |
+
vec = np.subtract(candB[j][:2], candA[i][:2])
|
118 |
+
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
|
119 |
+
norm = max(0.001, norm)
|
120 |
+
vec = np.divide(vec, norm)
|
121 |
+
|
122 |
+
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
|
123 |
+
np.linspace(candA[i][1], candB[j][1], num=mid_num)))
|
124 |
+
|
125 |
+
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
|
126 |
+
for I in range(len(startend))])
|
127 |
+
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
|
128 |
+
for I in range(len(startend))])
|
129 |
+
|
130 |
+
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
|
131 |
+
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
|
132 |
+
0.5 * oriImg.shape[0] / norm - 1, 0)
|
133 |
+
criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
|
134 |
+
criterion2 = score_with_dist_prior > 0
|
135 |
+
if criterion1 and criterion2:
|
136 |
+
connection_candidate.append(
|
137 |
+
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
|
138 |
+
|
139 |
+
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
|
140 |
+
connection = np.zeros((0, 5))
|
141 |
+
for c in range(len(connection_candidate)):
|
142 |
+
i, j, s = connection_candidate[c][0:3]
|
143 |
+
if (i not in connection[:, 3] and j not in connection[:, 4]):
|
144 |
+
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
|
145 |
+
if (len(connection) >= min(nA, nB)):
|
146 |
+
break
|
147 |
+
|
148 |
+
connection_all.append(connection)
|
149 |
+
else:
|
150 |
+
special_k.append(k)
|
151 |
+
connection_all.append([])
|
152 |
+
|
153 |
+
# last number in each row is the total parts number of that person
|
154 |
+
# the second last number in each row is the score of the overall configuration
|
155 |
+
subset = -1 * np.ones((0, 20))
|
156 |
+
candidate = np.array([item for sublist in all_peaks for item in sublist])
|
157 |
+
|
158 |
+
for k in range(len(mapIdx)):
|
159 |
+
if k not in special_k:
|
160 |
+
partAs = connection_all[k][:, 0]
|
161 |
+
partBs = connection_all[k][:, 1]
|
162 |
+
indexA, indexB = np.array(limbSeq[k]) - 1
|
163 |
+
|
164 |
+
for i in range(len(connection_all[k])): # = 1:size(temp,1)
|
165 |
+
found = 0
|
166 |
+
subset_idx = [-1, -1]
|
167 |
+
for j in range(len(subset)): # 1:size(subset,1):
|
168 |
+
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
|
169 |
+
subset_idx[found] = j
|
170 |
+
found += 1
|
171 |
+
|
172 |
+
if found == 1:
|
173 |
+
j = subset_idx[0]
|
174 |
+
if subset[j][indexB] != partBs[i]:
|
175 |
+
subset[j][indexB] = partBs[i]
|
176 |
+
subset[j][-1] += 1
|
177 |
+
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
|
178 |
+
elif found == 2: # if found 2 and disjoint, merge them
|
179 |
+
j1, j2 = subset_idx
|
180 |
+
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
|
181 |
+
if len(np.nonzero(membership == 2)[0]) == 0: # merge
|
182 |
+
subset[j1][:-2] += (subset[j2][:-2] + 1)
|
183 |
+
subset[j1][-2:] += subset[j2][-2:]
|
184 |
+
subset[j1][-2] += connection_all[k][i][2]
|
185 |
+
subset = np.delete(subset, j2, 0)
|
186 |
+
else: # as like found == 1
|
187 |
+
subset[j1][indexB] = partBs[i]
|
188 |
+
subset[j1][-1] += 1
|
189 |
+
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
|
190 |
+
|
191 |
+
# if find no partA in the subset, create a new subset
|
192 |
+
elif not found and k < 17:
|
193 |
+
row = -1 * np.ones(20)
|
194 |
+
row[indexA] = partAs[i]
|
195 |
+
row[indexB] = partBs[i]
|
196 |
+
row[-1] = 2
|
197 |
+
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
|
198 |
+
subset = np.vstack([subset, row])
|
199 |
+
# delete some rows of subset which has few parts occur
|
200 |
+
deleteIdx = []
|
201 |
+
for i in range(len(subset)):
|
202 |
+
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
|
203 |
+
deleteIdx.append(i)
|
204 |
+
subset = np.delete(subset, deleteIdx, axis=0)
|
205 |
+
|
206 |
+
# subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
|
207 |
+
# candidate: x, y, score, id
|
208 |
+
return candidate, subset
|
209 |
+
|
210 |
+
if __name__ == "__main__":
|
211 |
+
body_estimation = Body('../model/body_pose_model.pth')
|
212 |
+
|
213 |
+
test_image = '../images/ski.jpg'
|
214 |
+
oriImg = cv2.imread(test_image) # B,G,R order
|
215 |
+
candidate, subset = body_estimation(oriImg)
|
216 |
+
canvas = util.draw_bodypose(oriImg, candidate, subset)
|
217 |
+
plt.imshow(canvas[:, :, [2, 1, 0]])
|
218 |
+
plt.show()
|
src/hand.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import math
|
5 |
+
import time
|
6 |
+
from scipy.ndimage.filters import gaussian_filter
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import matplotlib
|
9 |
+
import torch
|
10 |
+
from skimage.measure import label
|
11 |
+
|
12 |
+
from src.model import handpose_model
|
13 |
+
from src import util
|
14 |
+
|
15 |
+
class Hand(object):
|
16 |
+
def __init__(self, model_path):
|
17 |
+
self.model = handpose_model()
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
self.model = self.model.cuda()
|
20 |
+
model_dict = util.transfer(self.model, torch.load(model_path))
|
21 |
+
self.model.load_state_dict(model_dict)
|
22 |
+
self.model.eval()
|
23 |
+
|
24 |
+
def __call__(self, oriImg):
|
25 |
+
scale_search = [0.5, 1.0, 1.5, 2.0]
|
26 |
+
# scale_search = [0.5]
|
27 |
+
boxsize = 368
|
28 |
+
stride = 8
|
29 |
+
padValue = 128
|
30 |
+
thre = 0.05
|
31 |
+
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
|
32 |
+
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22))
|
33 |
+
# paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
|
34 |
+
|
35 |
+
for m in range(len(multiplier)):
|
36 |
+
scale = multiplier[m]
|
37 |
+
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
38 |
+
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
|
39 |
+
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
|
40 |
+
im = np.ascontiguousarray(im)
|
41 |
+
|
42 |
+
data = torch.from_numpy(im).float()
|
43 |
+
if torch.cuda.is_available():
|
44 |
+
data = data.cuda()
|
45 |
+
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
|
46 |
+
with torch.no_grad():
|
47 |
+
output = self.model(data).cpu().numpy()
|
48 |
+
# output = self.model(data).numpy()q
|
49 |
+
|
50 |
+
# extract outputs, resize, and remove padding
|
51 |
+
heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps
|
52 |
+
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
53 |
+
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
54 |
+
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
55 |
+
|
56 |
+
heatmap_avg += heatmap / len(multiplier)
|
57 |
+
|
58 |
+
all_peaks = []
|
59 |
+
for part in range(21):
|
60 |
+
map_ori = heatmap_avg[:, :, part]
|
61 |
+
one_heatmap = gaussian_filter(map_ori, sigma=3)
|
62 |
+
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8)
|
63 |
+
# 全部小于阈值
|
64 |
+
if np.sum(binary) == 0:
|
65 |
+
all_peaks.append([0, 0])
|
66 |
+
continue
|
67 |
+
label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim)
|
68 |
+
max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1
|
69 |
+
label_img[label_img != max_index] = 0
|
70 |
+
map_ori[label_img == 0] = 0
|
71 |
+
|
72 |
+
y, x = util.npmax(map_ori)
|
73 |
+
all_peaks.append([x, y])
|
74 |
+
return np.array(all_peaks)
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
hand_estimation = Hand('../model/hand_pose_model.pth')
|
78 |
+
|
79 |
+
# test_image = '../images/hand.jpg'
|
80 |
+
test_image = '../images/hand.jpg'
|
81 |
+
oriImg = cv2.imread(test_image) # B,G,R order
|
82 |
+
peaks = hand_estimation(oriImg)
|
83 |
+
canvas = util.draw_handpose(oriImg, peaks, True)
|
84 |
+
cv2.imshow('', canvas)
|
85 |
+
cv2.waitKey(0)
|
src/hand_model_output_size.json
ADDED
@@ -0,0 +1,992 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"10":1,
|
3 |
+
"11":1,
|
4 |
+
"12":1,
|
5 |
+
"13":1,
|
6 |
+
"14":1,
|
7 |
+
"15":1,
|
8 |
+
"16":2,
|
9 |
+
"17":2,
|
10 |
+
"18":2,
|
11 |
+
"19":2,
|
12 |
+
"20":2,
|
13 |
+
"21":2,
|
14 |
+
"22":2,
|
15 |
+
"23":2,
|
16 |
+
"24":3,
|
17 |
+
"25":3,
|
18 |
+
"26":3,
|
19 |
+
"27":3,
|
20 |
+
"28":3,
|
21 |
+
"29":3,
|
22 |
+
"30":3,
|
23 |
+
"31":3,
|
24 |
+
"32":4,
|
25 |
+
"33":4,
|
26 |
+
"34":4,
|
27 |
+
"35":4,
|
28 |
+
"36":4,
|
29 |
+
"37":4,
|
30 |
+
"38":4,
|
31 |
+
"39":4,
|
32 |
+
"40":5,
|
33 |
+
"41":5,
|
34 |
+
"42":5,
|
35 |
+
"43":5,
|
36 |
+
"44":5,
|
37 |
+
"45":5,
|
38 |
+
"46":5,
|
39 |
+
"47":5,
|
40 |
+
"48":6,
|
41 |
+
"49":6,
|
42 |
+
"50":6,
|
43 |
+
"51":6,
|
44 |
+
"52":6,
|
45 |
+
"53":6,
|
46 |
+
"54":6,
|
47 |
+
"55":6,
|
48 |
+
"56":7,
|
49 |
+
"57":7,
|
50 |
+
"58":7,
|
51 |
+
"59":7,
|
52 |
+
"60":7,
|
53 |
+
"61":7,
|
54 |
+
"62":7,
|
55 |
+
"63":7,
|
56 |
+
"64":8,
|
57 |
+
"65":8,
|
58 |
+
"66":8,
|
59 |
+
"67":8,
|
60 |
+
"68":8,
|
61 |
+
"69":8,
|
62 |
+
"70":8,
|
63 |
+
"71":8,
|
64 |
+
"72":9,
|
65 |
+
"73":9,
|
66 |
+
"74":9,
|
67 |
+
"75":9,
|
68 |
+
"76":9,
|
69 |
+
"77":9,
|
70 |
+
"78":9,
|
71 |
+
"79":9,
|
72 |
+
"80":10,
|
73 |
+
"81":10,
|
74 |
+
"82":10,
|
75 |
+
"83":10,
|
76 |
+
"84":10,
|
77 |
+
"85":10,
|
78 |
+
"86":10,
|
79 |
+
"87":10,
|
80 |
+
"88":11,
|
81 |
+
"89":11,
|
82 |
+
"90":11,
|
83 |
+
"91":11,
|
84 |
+
"92":11,
|
85 |
+
"93":11,
|
86 |
+
"94":11,
|
87 |
+
"95":11,
|
88 |
+
"96":12,
|
89 |
+
"97":12,
|
90 |
+
"98":12,
|
91 |
+
"99":12,
|
92 |
+
"100":12,
|
93 |
+
"101":12,
|
94 |
+
"102":12,
|
95 |
+
"103":12,
|
96 |
+
"104":13,
|
97 |
+
"105":13,
|
98 |
+
"106":13,
|
99 |
+
"107":13,
|
100 |
+
"108":13,
|
101 |
+
"109":13,
|
102 |
+
"110":13,
|
103 |
+
"111":13,
|
104 |
+
"112":14,
|
105 |
+
"113":14,
|
106 |
+
"114":14,
|
107 |
+
"115":14,
|
108 |
+
"116":14,
|
109 |
+
"117":14,
|
110 |
+
"118":14,
|
111 |
+
"119":14,
|
112 |
+
"120":15,
|
113 |
+
"121":15,
|
114 |
+
"122":15,
|
115 |
+
"123":15,
|
116 |
+
"124":15,
|
117 |
+
"125":15,
|
118 |
+
"126":15,
|
119 |
+
"127":15,
|
120 |
+
"128":16,
|
121 |
+
"129":16,
|
122 |
+
"130":16,
|
123 |
+
"131":16,
|
124 |
+
"132":16,
|
125 |
+
"133":16,
|
126 |
+
"134":16,
|
127 |
+
"135":16,
|
128 |
+
"136":17,
|
129 |
+
"137":17,
|
130 |
+
"138":17,
|
131 |
+
"139":17,
|
132 |
+
"140":17,
|
133 |
+
"141":17,
|
134 |
+
"142":17,
|
135 |
+
"143":17,
|
136 |
+
"144":18,
|
137 |
+
"145":18,
|
138 |
+
"146":18,
|
139 |
+
"147":18,
|
140 |
+
"148":18,
|
141 |
+
"149":18,
|
142 |
+
"150":18,
|
143 |
+
"151":18,
|
144 |
+
"152":19,
|
145 |
+
"153":19,
|
146 |
+
"154":19,
|
147 |
+
"155":19,
|
148 |
+
"156":19,
|
149 |
+
"157":19,
|
150 |
+
"158":19,
|
151 |
+
"159":19,
|
152 |
+
"160":20,
|
153 |
+
"161":20,
|
154 |
+
"162":20,
|
155 |
+
"163":20,
|
156 |
+
"164":20,
|
157 |
+
"165":20,
|
158 |
+
"166":20,
|
159 |
+
"167":20,
|
160 |
+
"168":21,
|
161 |
+
"169":21,
|
162 |
+
"170":21,
|
163 |
+
"171":21,
|
164 |
+
"172":21,
|
165 |
+
"173":21,
|
166 |
+
"174":21,
|
167 |
+
"175":21,
|
168 |
+
"176":22,
|
169 |
+
"177":22,
|
170 |
+
"178":22,
|
171 |
+
"179":22,
|
172 |
+
"180":22,
|
173 |
+
"181":22,
|
174 |
+
"182":22,
|
175 |
+
"183":22,
|
176 |
+
"184":23,
|
177 |
+
"185":23,
|
178 |
+
"186":23,
|
179 |
+
"187":23,
|
180 |
+
"188":23,
|
181 |
+
"189":23,
|
182 |
+
"190":23,
|
183 |
+
"191":23,
|
184 |
+
"192":24,
|
185 |
+
"193":24,
|
186 |
+
"194":24,
|
187 |
+
"195":24,
|
188 |
+
"196":24,
|
189 |
+
"197":24,
|
190 |
+
"198":24,
|
191 |
+
"199":24,
|
192 |
+
"200":25,
|
193 |
+
"201":25,
|
194 |
+
"202":25,
|
195 |
+
"203":25,
|
196 |
+
"204":25,
|
197 |
+
"205":25,
|
198 |
+
"206":25,
|
199 |
+
"207":25,
|
200 |
+
"208":26,
|
201 |
+
"209":26,
|
202 |
+
"210":26,
|
203 |
+
"211":26,
|
204 |
+
"212":26,
|
205 |
+
"213":26,
|
206 |
+
"214":26,
|
207 |
+
"215":26,
|
208 |
+
"216":27,
|
209 |
+
"217":27,
|
210 |
+
"218":27,
|
211 |
+
"219":27,
|
212 |
+
"220":27,
|
213 |
+
"221":27,
|
214 |
+
"222":27,
|
215 |
+
"223":27,
|
216 |
+
"224":28,
|
217 |
+
"225":28,
|
218 |
+
"226":28,
|
219 |
+
"227":28,
|
220 |
+
"228":28,
|
221 |
+
"229":28,
|
222 |
+
"230":28,
|
223 |
+
"231":28,
|
224 |
+
"232":29,
|
225 |
+
"233":29,
|
226 |
+
"234":29,
|
227 |
+
"235":29,
|
228 |
+
"236":29,
|
229 |
+
"237":29,
|
230 |
+
"238":29,
|
231 |
+
"239":29,
|
232 |
+
"240":30,
|
233 |
+
"241":30,
|
234 |
+
"242":30,
|
235 |
+
"243":30,
|
236 |
+
"244":30,
|
237 |
+
"245":30,
|
238 |
+
"246":30,
|
239 |
+
"247":30,
|
240 |
+
"248":31,
|
241 |
+
"249":31,
|
242 |
+
"250":31,
|
243 |
+
"251":31,
|
244 |
+
"252":31,
|
245 |
+
"253":31,
|
246 |
+
"254":31,
|
247 |
+
"255":31,
|
248 |
+
"256":32,
|
249 |
+
"257":32,
|
250 |
+
"258":32,
|
251 |
+
"259":32,
|
252 |
+
"260":32,
|
253 |
+
"261":32,
|
254 |
+
"262":32,
|
255 |
+
"263":32,
|
256 |
+
"264":33,
|
257 |
+
"265":33,
|
258 |
+
"266":33,
|
259 |
+
"267":33,
|
260 |
+
"268":33,
|
261 |
+
"269":33,
|
262 |
+
"270":33,
|
263 |
+
"271":33,
|
264 |
+
"272":34,
|
265 |
+
"273":34,
|
266 |
+
"274":34,
|
267 |
+
"275":34,
|
268 |
+
"276":34,
|
269 |
+
"277":34,
|
270 |
+
"278":34,
|
271 |
+
"279":34,
|
272 |
+
"280":35,
|
273 |
+
"281":35,
|
274 |
+
"282":35,
|
275 |
+
"283":35,
|
276 |
+
"284":35,
|
277 |
+
"285":35,
|
278 |
+
"286":35,
|
279 |
+
"287":35,
|
280 |
+
"288":36,
|
281 |
+
"289":36,
|
282 |
+
"290":36,
|
283 |
+
"291":36,
|
284 |
+
"292":36,
|
285 |
+
"293":36,
|
286 |
+
"294":36,
|
287 |
+
"295":36,
|
288 |
+
"296":37,
|
289 |
+
"297":37,
|
290 |
+
"298":37,
|
291 |
+
"299":37,
|
292 |
+
"300":37,
|
293 |
+
"301":37,
|
294 |
+
"302":37,
|
295 |
+
"303":37,
|
296 |
+
"304":38,
|
297 |
+
"305":38,
|
298 |
+
"306":38,
|
299 |
+
"307":38,
|
300 |
+
"308":38,
|
301 |
+
"309":38,
|
302 |
+
"310":38,
|
303 |
+
"311":38,
|
304 |
+
"312":39,
|
305 |
+
"313":39,
|
306 |
+
"314":39,
|
307 |
+
"315":39,
|
308 |
+
"316":39,
|
309 |
+
"317":39,
|
310 |
+
"318":39,
|
311 |
+
"319":39,
|
312 |
+
"320":40,
|
313 |
+
"321":40,
|
314 |
+
"322":40,
|
315 |
+
"323":40,
|
316 |
+
"324":40,
|
317 |
+
"325":40,
|
318 |
+
"326":40,
|
319 |
+
"327":40,
|
320 |
+
"328":41,
|
321 |
+
"329":41,
|
322 |
+
"330":41,
|
323 |
+
"331":41,
|
324 |
+
"332":41,
|
325 |
+
"333":41,
|
326 |
+
"334":41,
|
327 |
+
"335":41,
|
328 |
+
"336":42,
|
329 |
+
"337":42,
|
330 |
+
"338":42,
|
331 |
+
"339":42,
|
332 |
+
"340":42,
|
333 |
+
"341":42,
|
334 |
+
"342":42,
|
335 |
+
"343":42,
|
336 |
+
"344":43,
|
337 |
+
"345":43,
|
338 |
+
"346":43,
|
339 |
+
"347":43,
|
340 |
+
"348":43,
|
341 |
+
"349":43,
|
342 |
+
"350":43,
|
343 |
+
"351":43,
|
344 |
+
"352":44,
|
345 |
+
"353":44,
|
346 |
+
"354":44,
|
347 |
+
"355":44,
|
348 |
+
"356":44,
|
349 |
+
"357":44,
|
350 |
+
"358":44,
|
351 |
+
"359":44,
|
352 |
+
"360":45,
|
353 |
+
"361":45,
|
354 |
+
"362":45,
|
355 |
+
"363":45,
|
356 |
+
"364":45,
|
357 |
+
"365":45,
|
358 |
+
"366":45,
|
359 |
+
"367":45,
|
360 |
+
"368":46,
|
361 |
+
"369":46,
|
362 |
+
"370":46,
|
363 |
+
"371":46,
|
364 |
+
"372":46,
|
365 |
+
"373":46,
|
366 |
+
"374":46,
|
367 |
+
"375":46,
|
368 |
+
"376":47,
|
369 |
+
"377":47,
|
370 |
+
"378":47,
|
371 |
+
"379":47,
|
372 |
+
"380":47,
|
373 |
+
"381":47,
|
374 |
+
"382":47,
|
375 |
+
"383":47,
|
376 |
+
"384":48,
|
377 |
+
"385":48,
|
378 |
+
"386":48,
|
379 |
+
"387":48,
|
380 |
+
"388":48,
|
381 |
+
"389":48,
|
382 |
+
"390":48,
|
383 |
+
"391":48,
|
384 |
+
"392":49,
|
385 |
+
"393":49,
|
386 |
+
"394":49,
|
387 |
+
"395":49,
|
388 |
+
"396":49,
|
389 |
+
"397":49,
|
390 |
+
"398":49,
|
391 |
+
"399":49,
|
392 |
+
"400":50,
|
393 |
+
"401":50,
|
394 |
+
"402":50,
|
395 |
+
"403":50,
|
396 |
+
"404":50,
|
397 |
+
"405":50,
|
398 |
+
"406":50,
|
399 |
+
"407":50,
|
400 |
+
"408":51,
|
401 |
+
"409":51,
|
402 |
+
"410":51,
|
403 |
+
"411":51,
|
404 |
+
"412":51,
|
405 |
+
"413":51,
|
406 |
+
"414":51,
|
407 |
+
"415":51,
|
408 |
+
"416":52,
|
409 |
+
"417":52,
|
410 |
+
"418":52,
|
411 |
+
"419":52,
|
412 |
+
"420":52,
|
413 |
+
"421":52,
|
414 |
+
"422":52,
|
415 |
+
"423":52,
|
416 |
+
"424":53,
|
417 |
+
"425":53,
|
418 |
+
"426":53,
|
419 |
+
"427":53,
|
420 |
+
"428":53,
|
421 |
+
"429":53,
|
422 |
+
"430":53,
|
423 |
+
"431":53,
|
424 |
+
"432":54,
|
425 |
+
"433":54,
|
426 |
+
"434":54,
|
427 |
+
"435":54,
|
428 |
+
"436":54,
|
429 |
+
"437":54,
|
430 |
+
"438":54,
|
431 |
+
"439":54,
|
432 |
+
"440":55,
|
433 |
+
"441":55,
|
434 |
+
"442":55,
|
435 |
+
"443":55,
|
436 |
+
"444":55,
|
437 |
+
"445":55,
|
438 |
+
"446":55,
|
439 |
+
"447":55,
|
440 |
+
"448":56,
|
441 |
+
"449":56,
|
442 |
+
"450":56,
|
443 |
+
"451":56,
|
444 |
+
"452":56,
|
445 |
+
"453":56,
|
446 |
+
"454":56,
|
447 |
+
"455":56,
|
448 |
+
"456":57,
|
449 |
+
"457":57,
|
450 |
+
"458":57,
|
451 |
+
"459":57,
|
452 |
+
"460":57,
|
453 |
+
"461":57,
|
454 |
+
"462":57,
|
455 |
+
"463":57,
|
456 |
+
"464":58,
|
457 |
+
"465":58,
|
458 |
+
"466":58,
|
459 |
+
"467":58,
|
460 |
+
"468":58,
|
461 |
+
"469":58,
|
462 |
+
"470":58,
|
463 |
+
"471":58,
|
464 |
+
"472":59,
|
465 |
+
"473":59,
|
466 |
+
"474":59,
|
467 |
+
"475":59,
|
468 |
+
"476":59,
|
469 |
+
"477":59,
|
470 |
+
"478":59,
|
471 |
+
"479":59,
|
472 |
+
"480":60,
|
473 |
+
"481":60,
|
474 |
+
"482":60,
|
475 |
+
"483":60,
|
476 |
+
"484":60,
|
477 |
+
"485":60,
|
478 |
+
"486":60,
|
479 |
+
"487":60,
|
480 |
+
"488":61,
|
481 |
+
"489":61,
|
482 |
+
"490":61,
|
483 |
+
"491":61,
|
484 |
+
"492":61,
|
485 |
+
"493":61,
|
486 |
+
"494":61,
|
487 |
+
"495":61,
|
488 |
+
"496":62,
|
489 |
+
"497":62,
|
490 |
+
"498":62,
|
491 |
+
"499":62,
|
492 |
+
"500":62,
|
493 |
+
"501":62,
|
494 |
+
"502":62,
|
495 |
+
"503":62,
|
496 |
+
"504":63,
|
497 |
+
"505":63,
|
498 |
+
"506":63,
|
499 |
+
"507":63,
|
500 |
+
"508":63,
|
501 |
+
"509":63,
|
502 |
+
"510":63,
|
503 |
+
"511":63,
|
504 |
+
"512":64,
|
505 |
+
"513":64,
|
506 |
+
"514":64,
|
507 |
+
"515":64,
|
508 |
+
"516":64,
|
509 |
+
"517":64,
|
510 |
+
"518":64,
|
511 |
+
"519":64,
|
512 |
+
"520":65,
|
513 |
+
"521":65,
|
514 |
+
"522":65,
|
515 |
+
"523":65,
|
516 |
+
"524":65,
|
517 |
+
"525":65,
|
518 |
+
"526":65,
|
519 |
+
"527":65,
|
520 |
+
"528":66,
|
521 |
+
"529":66,
|
522 |
+
"530":66,
|
523 |
+
"531":66,
|
524 |
+
"532":66,
|
525 |
+
"533":66,
|
526 |
+
"534":66,
|
527 |
+
"535":66,
|
528 |
+
"536":67,
|
529 |
+
"537":67,
|
530 |
+
"538":67,
|
531 |
+
"539":67,
|
532 |
+
"540":67,
|
533 |
+
"541":67,
|
534 |
+
"542":67,
|
535 |
+
"543":67,
|
536 |
+
"544":68,
|
537 |
+
"545":68,
|
538 |
+
"546":68,
|
539 |
+
"547":68,
|
540 |
+
"548":68,
|
541 |
+
"549":68,
|
542 |
+
"550":68,
|
543 |
+
"551":68,
|
544 |
+
"552":69,
|
545 |
+
"553":69,
|
546 |
+
"554":69,
|
547 |
+
"555":69,
|
548 |
+
"556":69,
|
549 |
+
"557":69,
|
550 |
+
"558":69,
|
551 |
+
"559":69,
|
552 |
+
"560":70,
|
553 |
+
"561":70,
|
554 |
+
"562":70,
|
555 |
+
"563":70,
|
556 |
+
"564":70,
|
557 |
+
"565":70,
|
558 |
+
"566":70,
|
559 |
+
"567":70,
|
560 |
+
"568":71,
|
561 |
+
"569":71,
|
562 |
+
"570":71,
|
563 |
+
"571":71,
|
564 |
+
"572":71,
|
565 |
+
"573":71,
|
566 |
+
"574":71,
|
567 |
+
"575":71,
|
568 |
+
"576":72,
|
569 |
+
"577":72,
|
570 |
+
"578":72,
|
571 |
+
"579":72,
|
572 |
+
"580":72,
|
573 |
+
"581":72,
|
574 |
+
"582":72,
|
575 |
+
"583":72,
|
576 |
+
"584":73,
|
577 |
+
"585":73,
|
578 |
+
"586":73,
|
579 |
+
"587":73,
|
580 |
+
"588":73,
|
581 |
+
"589":73,
|
582 |
+
"590":73,
|
583 |
+
"591":73,
|
584 |
+
"592":74,
|
585 |
+
"593":74,
|
586 |
+
"594":74,
|
587 |
+
"595":74,
|
588 |
+
"596":74,
|
589 |
+
"597":74,
|
590 |
+
"598":74,
|
591 |
+
"599":74,
|
592 |
+
"600":75,
|
593 |
+
"601":75,
|
594 |
+
"602":75,
|
595 |
+
"603":75,
|
596 |
+
"604":75,
|
597 |
+
"605":75,
|
598 |
+
"606":75,
|
599 |
+
"607":75,
|
600 |
+
"608":76,
|
601 |
+
"609":76,
|
602 |
+
"610":76,
|
603 |
+
"611":76,
|
604 |
+
"612":76,
|
605 |
+
"613":76,
|
606 |
+
"614":76,
|
607 |
+
"615":76,
|
608 |
+
"616":77,
|
609 |
+
"617":77,
|
610 |
+
"618":77,
|
611 |
+
"619":77,
|
612 |
+
"620":77,
|
613 |
+
"621":77,
|
614 |
+
"622":77,
|
615 |
+
"623":77,
|
616 |
+
"624":78,
|
617 |
+
"625":78,
|
618 |
+
"626":78,
|
619 |
+
"627":78,
|
620 |
+
"628":78,
|
621 |
+
"629":78,
|
622 |
+
"630":78,
|
623 |
+
"631":78,
|
624 |
+
"632":79,
|
625 |
+
"633":79,
|
626 |
+
"634":79,
|
627 |
+
"635":79,
|
628 |
+
"636":79,
|
629 |
+
"637":79,
|
630 |
+
"638":79,
|
631 |
+
"639":79,
|
632 |
+
"640":80,
|
633 |
+
"641":80,
|
634 |
+
"642":80,
|
635 |
+
"643":80,
|
636 |
+
"644":80,
|
637 |
+
"645":80,
|
638 |
+
"646":80,
|
639 |
+
"647":80,
|
640 |
+
"648":81,
|
641 |
+
"649":81,
|
642 |
+
"650":81,
|
643 |
+
"651":81,
|
644 |
+
"652":81,
|
645 |
+
"653":81,
|
646 |
+
"654":81,
|
647 |
+
"655":81,
|
648 |
+
"656":82,
|
649 |
+
"657":82,
|
650 |
+
"658":82,
|
651 |
+
"659":82,
|
652 |
+
"660":82,
|
653 |
+
"661":82,
|
654 |
+
"662":82,
|
655 |
+
"663":82,
|
656 |
+
"664":83,
|
657 |
+
"665":83,
|
658 |
+
"666":83,
|
659 |
+
"667":83,
|
660 |
+
"668":83,
|
661 |
+
"669":83,
|
662 |
+
"670":83,
|
663 |
+
"671":83,
|
664 |
+
"672":84,
|
665 |
+
"673":84,
|
666 |
+
"674":84,
|
667 |
+
"675":84,
|
668 |
+
"676":84,
|
669 |
+
"677":84,
|
670 |
+
"678":84,
|
671 |
+
"679":84,
|
672 |
+
"680":85,
|
673 |
+
"681":85,
|
674 |
+
"682":85,
|
675 |
+
"683":85,
|
676 |
+
"684":85,
|
677 |
+
"685":85,
|
678 |
+
"686":85,
|
679 |
+
"687":85,
|
680 |
+
"688":86,
|
681 |
+
"689":86,
|
682 |
+
"690":86,
|
683 |
+
"691":86,
|
684 |
+
"692":86,
|
685 |
+
"693":86,
|
686 |
+
"694":86,
|
687 |
+
"695":86,
|
688 |
+
"696":87,
|
689 |
+
"697":87,
|
690 |
+
"698":87,
|
691 |
+
"699":87,
|
692 |
+
"700":87,
|
693 |
+
"701":87,
|
694 |
+
"702":87,
|
695 |
+
"703":87,
|
696 |
+
"704":88,
|
697 |
+
"705":88,
|
698 |
+
"706":88,
|
699 |
+
"707":88,
|
700 |
+
"708":88,
|
701 |
+
"709":88,
|
702 |
+
"710":88,
|
703 |
+
"711":88,
|
704 |
+
"712":89,
|
705 |
+
"713":89,
|
706 |
+
"714":89,
|
707 |
+
"715":89,
|
708 |
+
"716":89,
|
709 |
+
"717":89,
|
710 |
+
"718":89,
|
711 |
+
"719":89,
|
712 |
+
"720":90,
|
713 |
+
"721":90,
|
714 |
+
"722":90,
|
715 |
+
"723":90,
|
716 |
+
"724":90,
|
717 |
+
"725":90,
|
718 |
+
"726":90,
|
719 |
+
"727":90,
|
720 |
+
"728":91,
|
721 |
+
"729":91,
|
722 |
+
"730":91,
|
723 |
+
"731":91,
|
724 |
+
"732":91,
|
725 |
+
"733":91,
|
726 |
+
"734":91,
|
727 |
+
"735":91,
|
728 |
+
"736":92,
|
729 |
+
"737":92,
|
730 |
+
"738":92,
|
731 |
+
"739":92,
|
732 |
+
"740":92,
|
733 |
+
"741":92,
|
734 |
+
"742":92,
|
735 |
+
"743":92,
|
736 |
+
"744":93,
|
737 |
+
"745":93,
|
738 |
+
"746":93,
|
739 |
+
"747":93,
|
740 |
+
"748":93,
|
741 |
+
"749":93,
|
742 |
+
"750":93,
|
743 |
+
"751":93,
|
744 |
+
"752":94,
|
745 |
+
"753":94,
|
746 |
+
"754":94,
|
747 |
+
"755":94,
|
748 |
+
"756":94,
|
749 |
+
"757":94,
|
750 |
+
"758":94,
|
751 |
+
"759":94,
|
752 |
+
"760":95,
|
753 |
+
"761":95,
|
754 |
+
"762":95,
|
755 |
+
"763":95,
|
756 |
+
"764":95,
|
757 |
+
"765":95,
|
758 |
+
"766":95,
|
759 |
+
"767":95,
|
760 |
+
"768":96,
|
761 |
+
"769":96,
|
762 |
+
"770":96,
|
763 |
+
"771":96,
|
764 |
+
"772":96,
|
765 |
+
"773":96,
|
766 |
+
"774":96,
|
767 |
+
"775":96,
|
768 |
+
"776":97,
|
769 |
+
"777":97,
|
770 |
+
"778":97,
|
771 |
+
"779":97,
|
772 |
+
"780":97,
|
773 |
+
"781":97,
|
774 |
+
"782":97,
|
775 |
+
"783":97,
|
776 |
+
"784":98,
|
777 |
+
"785":98,
|
778 |
+
"786":98,
|
779 |
+
"787":98,
|
780 |
+
"788":98,
|
781 |
+
"789":98,
|
782 |
+
"790":98,
|
783 |
+
"791":98,
|
784 |
+
"792":99,
|
785 |
+
"793":99,
|
786 |
+
"794":99,
|
787 |
+
"795":99,
|
788 |
+
"796":99,
|
789 |
+
"797":99,
|
790 |
+
"798":99,
|
791 |
+
"799":99,
|
792 |
+
"800":100,
|
793 |
+
"801":100,
|
794 |
+
"802":100,
|
795 |
+
"803":100,
|
796 |
+
"804":100,
|
797 |
+
"805":100,
|
798 |
+
"806":100,
|
799 |
+
"807":100,
|
800 |
+
"808":101,
|
801 |
+
"809":101,
|
802 |
+
"810":101,
|
803 |
+
"811":101,
|
804 |
+
"812":101,
|
805 |
+
"813":101,
|
806 |
+
"814":101,
|
807 |
+
"815":101,
|
808 |
+
"816":102,
|
809 |
+
"817":102,
|
810 |
+
"818":102,
|
811 |
+
"819":102,
|
812 |
+
"820":102,
|
813 |
+
"821":102,
|
814 |
+
"822":102,
|
815 |
+
"823":102,
|
816 |
+
"824":103,
|
817 |
+
"825":103,
|
818 |
+
"826":103,
|
819 |
+
"827":103,
|
820 |
+
"828":103,
|
821 |
+
"829":103,
|
822 |
+
"830":103,
|
823 |
+
"831":103,
|
824 |
+
"832":104,
|
825 |
+
"833":104,
|
826 |
+
"834":104,
|
827 |
+
"835":104,
|
828 |
+
"836":104,
|
829 |
+
"837":104,
|
830 |
+
"838":104,
|
831 |
+
"839":104,
|
832 |
+
"840":105,
|
833 |
+
"841":105,
|
834 |
+
"842":105,
|
835 |
+
"843":105,
|
836 |
+
"844":105,
|
837 |
+
"845":105,
|
838 |
+
"846":105,
|
839 |
+
"847":105,
|
840 |
+
"848":106,
|
841 |
+
"849":106,
|
842 |
+
"850":106,
|
843 |
+
"851":106,
|
844 |
+
"852":106,
|
845 |
+
"853":106,
|
846 |
+
"854":106,
|
847 |
+
"855":106,
|
848 |
+
"856":107,
|
849 |
+
"857":107,
|
850 |
+
"858":107,
|
851 |
+
"859":107,
|
852 |
+
"860":107,
|
853 |
+
"861":107,
|
854 |
+
"862":107,
|
855 |
+
"863":107,
|
856 |
+
"864":108,
|
857 |
+
"865":108,
|
858 |
+
"866":108,
|
859 |
+
"867":108,
|
860 |
+
"868":108,
|
861 |
+
"869":108,
|
862 |
+
"870":108,
|
863 |
+
"871":108,
|
864 |
+
"872":109,
|
865 |
+
"873":109,
|
866 |
+
"874":109,
|
867 |
+
"875":109,
|
868 |
+
"876":109,
|
869 |
+
"877":109,
|
870 |
+
"878":109,
|
871 |
+
"879":109,
|
872 |
+
"880":110,
|
873 |
+
"881":110,
|
874 |
+
"882":110,
|
875 |
+
"883":110,
|
876 |
+
"884":110,
|
877 |
+
"885":110,
|
878 |
+
"886":110,
|
879 |
+
"887":110,
|
880 |
+
"888":111,
|
881 |
+
"889":111,
|
882 |
+
"890":111,
|
883 |
+
"891":111,
|
884 |
+
"892":111,
|
885 |
+
"893":111,
|
886 |
+
"894":111,
|
887 |
+
"895":111,
|
888 |
+
"896":112,
|
889 |
+
"897":112,
|
890 |
+
"898":112,
|
891 |
+
"899":112,
|
892 |
+
"900":112,
|
893 |
+
"901":112,
|
894 |
+
"902":112,
|
895 |
+
"903":112,
|
896 |
+
"904":113,
|
897 |
+
"905":113,
|
898 |
+
"906":113,
|
899 |
+
"907":113,
|
900 |
+
"908":113,
|
901 |
+
"909":113,
|
902 |
+
"910":113,
|
903 |
+
"911":113,
|
904 |
+
"912":114,
|
905 |
+
"913":114,
|
906 |
+
"914":114,
|
907 |
+
"915":114,
|
908 |
+
"916":114,
|
909 |
+
"917":114,
|
910 |
+
"918":114,
|
911 |
+
"919":114,
|
912 |
+
"920":115,
|
913 |
+
"921":115,
|
914 |
+
"922":115,
|
915 |
+
"923":115,
|
916 |
+
"924":115,
|
917 |
+
"925":115,
|
918 |
+
"926":115,
|
919 |
+
"927":115,
|
920 |
+
"928":116,
|
921 |
+
"929":116,
|
922 |
+
"930":116,
|
923 |
+
"931":116,
|
924 |
+
"932":116,
|
925 |
+
"933":116,
|
926 |
+
"934":116,
|
927 |
+
"935":116,
|
928 |
+
"936":117,
|
929 |
+
"937":117,
|
930 |
+
"938":117,
|
931 |
+
"939":117,
|
932 |
+
"940":117,
|
933 |
+
"941":117,
|
934 |
+
"942":117,
|
935 |
+
"943":117,
|
936 |
+
"944":118,
|
937 |
+
"945":118,
|
938 |
+
"946":118,
|
939 |
+
"947":118,
|
940 |
+
"948":118,
|
941 |
+
"949":118,
|
942 |
+
"950":118,
|
943 |
+
"951":118,
|
944 |
+
"952":119,
|
945 |
+
"953":119,
|
946 |
+
"954":119,
|
947 |
+
"955":119,
|
948 |
+
"956":119,
|
949 |
+
"957":119,
|
950 |
+
"958":119,
|
951 |
+
"959":119,
|
952 |
+
"960":120,
|
953 |
+
"961":120,
|
954 |
+
"962":120,
|
955 |
+
"963":120,
|
956 |
+
"964":120,
|
957 |
+
"965":120,
|
958 |
+
"966":120,
|
959 |
+
"967":120,
|
960 |
+
"968":121,
|
961 |
+
"969":121,
|
962 |
+
"970":121,
|
963 |
+
"971":121,
|
964 |
+
"972":121,
|
965 |
+
"973":121,
|
966 |
+
"974":121,
|
967 |
+
"975":121,
|
968 |
+
"976":122,
|
969 |
+
"977":122,
|
970 |
+
"978":122,
|
971 |
+
"979":122,
|
972 |
+
"980":122,
|
973 |
+
"981":122,
|
974 |
+
"982":122,
|
975 |
+
"983":122,
|
976 |
+
"984":123,
|
977 |
+
"985":123,
|
978 |
+
"986":123,
|
979 |
+
"987":123,
|
980 |
+
"988":123,
|
981 |
+
"989":123,
|
982 |
+
"990":123,
|
983 |
+
"991":123,
|
984 |
+
"992":124,
|
985 |
+
"993":124,
|
986 |
+
"994":124,
|
987 |
+
"995":124,
|
988 |
+
"996":124,
|
989 |
+
"997":124,
|
990 |
+
"998":124,
|
991 |
+
"999":124
|
992 |
+
}
|
src/hand_model_outputsize.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from tqdm import tqdm
|
3 |
+
import json
|
4 |
+
|
5 |
+
from src.model import handpose_model
|
6 |
+
|
7 |
+
model = handpose_model()
|
8 |
+
|
9 |
+
size = {}
|
10 |
+
for i in tqdm(range(10, 1000)):
|
11 |
+
data = torch.randn(1, 3, i, i)
|
12 |
+
if torch.cuda.is_available():
|
13 |
+
data = data.cuda()
|
14 |
+
size[i] = model(data).size(2)
|
15 |
+
|
16 |
+
with open('hand_model_output_size.json') as f:
|
17 |
+
json.dump(size, f)
|
src/model.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from collections import OrderedDict
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
def make_layers(block, no_relu_layers):
|
8 |
+
layers = []
|
9 |
+
for layer_name, v in block.items():
|
10 |
+
if 'pool' in layer_name:
|
11 |
+
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1],
|
12 |
+
padding=v[2])
|
13 |
+
layers.append((layer_name, layer))
|
14 |
+
else:
|
15 |
+
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1],
|
16 |
+
kernel_size=v[2], stride=v[3],
|
17 |
+
padding=v[4])
|
18 |
+
layers.append((layer_name, conv2d))
|
19 |
+
if layer_name not in no_relu_layers:
|
20 |
+
layers.append(('relu_'+layer_name, nn.ReLU(inplace=True)))
|
21 |
+
|
22 |
+
return nn.Sequential(OrderedDict(layers))
|
23 |
+
|
24 |
+
class bodypose_model(nn.Module):
|
25 |
+
def __init__(self):
|
26 |
+
super(bodypose_model, self).__init__()
|
27 |
+
|
28 |
+
# these layers have no relu layer
|
29 |
+
no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\
|
30 |
+
'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\
|
31 |
+
'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\
|
32 |
+
'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1']
|
33 |
+
blocks = {}
|
34 |
+
block0 = OrderedDict([
|
35 |
+
('conv1_1', [3, 64, 3, 1, 1]),
|
36 |
+
('conv1_2', [64, 64, 3, 1, 1]),
|
37 |
+
('pool1_stage1', [2, 2, 0]),
|
38 |
+
('conv2_1', [64, 128, 3, 1, 1]),
|
39 |
+
('conv2_2', [128, 128, 3, 1, 1]),
|
40 |
+
('pool2_stage1', [2, 2, 0]),
|
41 |
+
('conv3_1', [128, 256, 3, 1, 1]),
|
42 |
+
('conv3_2', [256, 256, 3, 1, 1]),
|
43 |
+
('conv3_3', [256, 256, 3, 1, 1]),
|
44 |
+
('conv3_4', [256, 256, 3, 1, 1]),
|
45 |
+
('pool3_stage1', [2, 2, 0]),
|
46 |
+
('conv4_1', [256, 512, 3, 1, 1]),
|
47 |
+
('conv4_2', [512, 512, 3, 1, 1]),
|
48 |
+
('conv4_3_CPM', [512, 256, 3, 1, 1]),
|
49 |
+
('conv4_4_CPM', [256, 128, 3, 1, 1])
|
50 |
+
])
|
51 |
+
|
52 |
+
|
53 |
+
# Stage 1
|
54 |
+
block1_1 = OrderedDict([
|
55 |
+
('conv5_1_CPM_L1', [128, 128, 3, 1, 1]),
|
56 |
+
('conv5_2_CPM_L1', [128, 128, 3, 1, 1]),
|
57 |
+
('conv5_3_CPM_L1', [128, 128, 3, 1, 1]),
|
58 |
+
('conv5_4_CPM_L1', [128, 512, 1, 1, 0]),
|
59 |
+
('conv5_5_CPM_L1', [512, 38, 1, 1, 0])
|
60 |
+
])
|
61 |
+
|
62 |
+
block1_2 = OrderedDict([
|
63 |
+
('conv5_1_CPM_L2', [128, 128, 3, 1, 1]),
|
64 |
+
('conv5_2_CPM_L2', [128, 128, 3, 1, 1]),
|
65 |
+
('conv5_3_CPM_L2', [128, 128, 3, 1, 1]),
|
66 |
+
('conv5_4_CPM_L2', [128, 512, 1, 1, 0]),
|
67 |
+
('conv5_5_CPM_L2', [512, 19, 1, 1, 0])
|
68 |
+
])
|
69 |
+
blocks['block1_1'] = block1_1
|
70 |
+
blocks['block1_2'] = block1_2
|
71 |
+
|
72 |
+
self.model0 = make_layers(block0, no_relu_layers)
|
73 |
+
|
74 |
+
# Stages 2 - 6
|
75 |
+
for i in range(2, 7):
|
76 |
+
blocks['block%d_1' % i] = OrderedDict([
|
77 |
+
('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]),
|
78 |
+
('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
79 |
+
('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
80 |
+
('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
81 |
+
('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
82 |
+
('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]),
|
83 |
+
('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0])
|
84 |
+
])
|
85 |
+
|
86 |
+
blocks['block%d_2' % i] = OrderedDict([
|
87 |
+
('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]),
|
88 |
+
('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
89 |
+
('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
90 |
+
('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
91 |
+
('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
92 |
+
('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]),
|
93 |
+
('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0])
|
94 |
+
])
|
95 |
+
|
96 |
+
for k in blocks.keys():
|
97 |
+
blocks[k] = make_layers(blocks[k], no_relu_layers)
|
98 |
+
|
99 |
+
self.model1_1 = blocks['block1_1']
|
100 |
+
self.model2_1 = blocks['block2_1']
|
101 |
+
self.model3_1 = blocks['block3_1']
|
102 |
+
self.model4_1 = blocks['block4_1']
|
103 |
+
self.model5_1 = blocks['block5_1']
|
104 |
+
self.model6_1 = blocks['block6_1']
|
105 |
+
|
106 |
+
self.model1_2 = blocks['block1_2']
|
107 |
+
self.model2_2 = blocks['block2_2']
|
108 |
+
self.model3_2 = blocks['block3_2']
|
109 |
+
self.model4_2 = blocks['block4_2']
|
110 |
+
self.model5_2 = blocks['block5_2']
|
111 |
+
self.model6_2 = blocks['block6_2']
|
112 |
+
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
|
116 |
+
out1 = self.model0(x)
|
117 |
+
|
118 |
+
out1_1 = self.model1_1(out1)
|
119 |
+
out1_2 = self.model1_2(out1)
|
120 |
+
out2 = torch.cat([out1_1, out1_2, out1], 1)
|
121 |
+
|
122 |
+
out2_1 = self.model2_1(out2)
|
123 |
+
out2_2 = self.model2_2(out2)
|
124 |
+
out3 = torch.cat([out2_1, out2_2, out1], 1)
|
125 |
+
|
126 |
+
out3_1 = self.model3_1(out3)
|
127 |
+
out3_2 = self.model3_2(out3)
|
128 |
+
out4 = torch.cat([out3_1, out3_2, out1], 1)
|
129 |
+
|
130 |
+
out4_1 = self.model4_1(out4)
|
131 |
+
out4_2 = self.model4_2(out4)
|
132 |
+
out5 = torch.cat([out4_1, out4_2, out1], 1)
|
133 |
+
|
134 |
+
out5_1 = self.model5_1(out5)
|
135 |
+
out5_2 = self.model5_2(out5)
|
136 |
+
out6 = torch.cat([out5_1, out5_2, out1], 1)
|
137 |
+
|
138 |
+
out6_1 = self.model6_1(out6)
|
139 |
+
out6_2 = self.model6_2(out6)
|
140 |
+
|
141 |
+
return out6_1, out6_2
|
142 |
+
|
143 |
+
class handpose_model(nn.Module):
|
144 |
+
def __init__(self):
|
145 |
+
super(handpose_model, self).__init__()
|
146 |
+
|
147 |
+
# these layers have no relu layer
|
148 |
+
no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\
|
149 |
+
'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6']
|
150 |
+
# stage 1
|
151 |
+
block1_0 = OrderedDict([
|
152 |
+
('conv1_1', [3, 64, 3, 1, 1]),
|
153 |
+
('conv1_2', [64, 64, 3, 1, 1]),
|
154 |
+
('pool1_stage1', [2, 2, 0]),
|
155 |
+
('conv2_1', [64, 128, 3, 1, 1]),
|
156 |
+
('conv2_2', [128, 128, 3, 1, 1]),
|
157 |
+
('pool2_stage1', [2, 2, 0]),
|
158 |
+
('conv3_1', [128, 256, 3, 1, 1]),
|
159 |
+
('conv3_2', [256, 256, 3, 1, 1]),
|
160 |
+
('conv3_3', [256, 256, 3, 1, 1]),
|
161 |
+
('conv3_4', [256, 256, 3, 1, 1]),
|
162 |
+
('pool3_stage1', [2, 2, 0]),
|
163 |
+
('conv4_1', [256, 512, 3, 1, 1]),
|
164 |
+
('conv4_2', [512, 512, 3, 1, 1]),
|
165 |
+
('conv4_3', [512, 512, 3, 1, 1]),
|
166 |
+
('conv4_4', [512, 512, 3, 1, 1]),
|
167 |
+
('conv5_1', [512, 512, 3, 1, 1]),
|
168 |
+
('conv5_2', [512, 512, 3, 1, 1]),
|
169 |
+
('conv5_3_CPM', [512, 128, 3, 1, 1])
|
170 |
+
])
|
171 |
+
|
172 |
+
block1_1 = OrderedDict([
|
173 |
+
('conv6_1_CPM', [128, 512, 1, 1, 0]),
|
174 |
+
('conv6_2_CPM', [512, 22, 1, 1, 0])
|
175 |
+
])
|
176 |
+
|
177 |
+
blocks = {}
|
178 |
+
blocks['block1_0'] = block1_0
|
179 |
+
blocks['block1_1'] = block1_1
|
180 |
+
|
181 |
+
# stage 2-6
|
182 |
+
for i in range(2, 7):
|
183 |
+
blocks['block%d' % i] = OrderedDict([
|
184 |
+
('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]),
|
185 |
+
('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]),
|
186 |
+
('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]),
|
187 |
+
('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]),
|
188 |
+
('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]),
|
189 |
+
('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]),
|
190 |
+
('Mconv7_stage%d' % i, [128, 22, 1, 1, 0])
|
191 |
+
])
|
192 |
+
|
193 |
+
for k in blocks.keys():
|
194 |
+
blocks[k] = make_layers(blocks[k], no_relu_layers)
|
195 |
+
|
196 |
+
self.model1_0 = blocks['block1_0']
|
197 |
+
self.model1_1 = blocks['block1_1']
|
198 |
+
self.model2 = blocks['block2']
|
199 |
+
self.model3 = blocks['block3']
|
200 |
+
self.model4 = blocks['block4']
|
201 |
+
self.model5 = blocks['block5']
|
202 |
+
self.model6 = blocks['block6']
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
out1_0 = self.model1_0(x)
|
206 |
+
out1_1 = self.model1_1(out1_0)
|
207 |
+
concat_stage2 = torch.cat([out1_1, out1_0], 1)
|
208 |
+
out_stage2 = self.model2(concat_stage2)
|
209 |
+
concat_stage3 = torch.cat([out_stage2, out1_0], 1)
|
210 |
+
out_stage3 = self.model3(concat_stage3)
|
211 |
+
concat_stage4 = torch.cat([out_stage3, out1_0], 1)
|
212 |
+
out_stage4 = self.model4(concat_stage4)
|
213 |
+
concat_stage5 = torch.cat([out_stage4, out1_0], 1)
|
214 |
+
out_stage5 = self.model5(concat_stage5)
|
215 |
+
concat_stage6 = torch.cat([out_stage5, out1_0], 1)
|
216 |
+
out_stage6 = self.model6(concat_stage6)
|
217 |
+
return out_stage6
|
218 |
+
|
219 |
+
|
src/util.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import math
|
3 |
+
import cv2
|
4 |
+
import matplotlib
|
5 |
+
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
|
6 |
+
from matplotlib.figure import Figure
|
7 |
+
import numpy as np
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import cv2
|
10 |
+
|
11 |
+
|
12 |
+
def padRightDownCorner(img, stride, padValue):
|
13 |
+
h = img.shape[0]
|
14 |
+
w = img.shape[1]
|
15 |
+
|
16 |
+
pad = 4 * [None]
|
17 |
+
pad[0] = 0 # up
|
18 |
+
pad[1] = 0 # left
|
19 |
+
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
|
20 |
+
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
|
21 |
+
|
22 |
+
img_padded = img
|
23 |
+
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
|
24 |
+
img_padded = np.concatenate((pad_up, img_padded), axis=0)
|
25 |
+
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
|
26 |
+
img_padded = np.concatenate((pad_left, img_padded), axis=1)
|
27 |
+
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
|
28 |
+
img_padded = np.concatenate((img_padded, pad_down), axis=0)
|
29 |
+
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
|
30 |
+
img_padded = np.concatenate((img_padded, pad_right), axis=1)
|
31 |
+
|
32 |
+
return img_padded, pad
|
33 |
+
|
34 |
+
# transfer caffe model to pytorch which will match the layer name
|
35 |
+
def transfer(model, model_weights):
|
36 |
+
transfered_model_weights = {}
|
37 |
+
for weights_name in model.state_dict().keys():
|
38 |
+
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
|
39 |
+
return transfered_model_weights
|
40 |
+
|
41 |
+
# draw the body keypoint and lims
|
42 |
+
def draw_bodypose(canvas, candidate, subset):
|
43 |
+
stickwidth = 4
|
44 |
+
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
45 |
+
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
46 |
+
[1, 16], [16, 18], [3, 17], [6, 18]]
|
47 |
+
|
48 |
+
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
|
49 |
+
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
|
50 |
+
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
51 |
+
for i in range(18):
|
52 |
+
for n in range(len(subset)):
|
53 |
+
index = int(subset[n][i])
|
54 |
+
if index == -1:
|
55 |
+
continue
|
56 |
+
x, y = candidate[index][0:2]
|
57 |
+
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
|
58 |
+
for i in range(17):
|
59 |
+
for n in range(len(subset)):
|
60 |
+
index = subset[n][np.array(limbSeq[i]) - 1]
|
61 |
+
if -1 in index:
|
62 |
+
continue
|
63 |
+
cur_canvas = canvas.copy()
|
64 |
+
Y = candidate[index.astype(int), 0]
|
65 |
+
X = candidate[index.astype(int), 1]
|
66 |
+
mX = np.mean(X)
|
67 |
+
mY = np.mean(Y)
|
68 |
+
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
|
69 |
+
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
70 |
+
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
71 |
+
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
|
72 |
+
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
|
73 |
+
# plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]])
|
74 |
+
# plt.imshow(canvas[:, :, [2, 1, 0]])
|
75 |
+
return canvas
|
76 |
+
|
77 |
+
def draw_handpose(canvas, all_hand_peaks, show_number=False):
|
78 |
+
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
|
79 |
+
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
|
80 |
+
fig = Figure(figsize=plt.figaspect(canvas))
|
81 |
+
|
82 |
+
fig.subplots_adjust(0, 0, 1, 1)
|
83 |
+
fig.subplots_adjust(bottom=0, top=1, left=0, right=1)
|
84 |
+
bg = FigureCanvas(fig)
|
85 |
+
ax = fig.subplots()
|
86 |
+
ax.axis('off')
|
87 |
+
ax.imshow(canvas)
|
88 |
+
|
89 |
+
width, height = ax.figure.get_size_inches() * ax.figure.get_dpi()
|
90 |
+
|
91 |
+
for peaks in all_hand_peaks:
|
92 |
+
for ie, e in enumerate(edges):
|
93 |
+
if np.sum(np.all(peaks[e], axis=1)==0)==0:
|
94 |
+
x1, y1 = peaks[e[0]]
|
95 |
+
x2, y2 = peaks[e[1]]
|
96 |
+
ax.plot([x1, x2], [y1, y2], color=matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0]))
|
97 |
+
|
98 |
+
for i, keyponit in enumerate(peaks):
|
99 |
+
x, y = keyponit
|
100 |
+
ax.plot(x, y, 'r.')
|
101 |
+
if show_number:
|
102 |
+
ax.text(x, y, str(i))
|
103 |
+
bg.draw()
|
104 |
+
canvas = np.fromstring(bg.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
|
105 |
+
return canvas
|
106 |
+
|
107 |
+
# image drawed by opencv is not good.
|
108 |
+
def draw_handpose_by_opencv(canvas, peaks, show_number=False):
|
109 |
+
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
|
110 |
+
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
|
111 |
+
# cv2.rectangle(canvas, (x, y), (x+w, y+w), (0, 255, 0), 2, lineType=cv2.LINE_AA)
|
112 |
+
# cv2.putText(canvas, 'left' if is_left else 'right', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
113 |
+
for ie, e in enumerate(edges):
|
114 |
+
if np.sum(np.all(peaks[e], axis=1)==0)==0:
|
115 |
+
x1, y1 = peaks[e[0]]
|
116 |
+
x2, y2 = peaks[e[1]]
|
117 |
+
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2)
|
118 |
+
|
119 |
+
for i, keyponit in enumerate(peaks):
|
120 |
+
x, y = keyponit
|
121 |
+
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
|
122 |
+
if show_number:
|
123 |
+
cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA)
|
124 |
+
return canvas
|
125 |
+
|
126 |
+
# detect hand according to body pose keypoints
|
127 |
+
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
|
128 |
+
def handDetect(candidate, subset, oriImg):
|
129 |
+
# right hand: wrist 4, elbow 3, shoulder 2
|
130 |
+
# left hand: wrist 7, elbow 6, shoulder 5
|
131 |
+
ratioWristElbow = 0.33
|
132 |
+
detect_result = []
|
133 |
+
image_height, image_width = oriImg.shape[0:2]
|
134 |
+
for person in subset.astype(int):
|
135 |
+
# if any of three not detected
|
136 |
+
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
|
137 |
+
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
|
138 |
+
if not (has_left or has_right):
|
139 |
+
continue
|
140 |
+
hands = []
|
141 |
+
#left hand
|
142 |
+
if has_left:
|
143 |
+
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
|
144 |
+
x1, y1 = candidate[left_shoulder_index][:2]
|
145 |
+
x2, y2 = candidate[left_elbow_index][:2]
|
146 |
+
x3, y3 = candidate[left_wrist_index][:2]
|
147 |
+
hands.append([x1, y1, x2, y2, x3, y3, True])
|
148 |
+
# right hand
|
149 |
+
if has_right:
|
150 |
+
right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
|
151 |
+
x1, y1 = candidate[right_shoulder_index][:2]
|
152 |
+
x2, y2 = candidate[right_elbow_index][:2]
|
153 |
+
x3, y3 = candidate[right_wrist_index][:2]
|
154 |
+
hands.append([x1, y1, x2, y2, x3, y3, False])
|
155 |
+
|
156 |
+
for x1, y1, x2, y2, x3, y3, is_left in hands:
|
157 |
+
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
|
158 |
+
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
|
159 |
+
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
|
160 |
+
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
|
161 |
+
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
|
162 |
+
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
|
163 |
+
x = x3 + ratioWristElbow * (x3 - x2)
|
164 |
+
y = y3 + ratioWristElbow * (y3 - y2)
|
165 |
+
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
|
166 |
+
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
167 |
+
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
|
168 |
+
# x-y refers to the center --> offset to topLeft point
|
169 |
+
# handRectangle.x -= handRectangle.width / 2.f;
|
170 |
+
# handRectangle.y -= handRectangle.height / 2.f;
|
171 |
+
x -= width / 2
|
172 |
+
y -= width / 2 # width = height
|
173 |
+
# overflow the image
|
174 |
+
if x < 0: x = 0
|
175 |
+
if y < 0: y = 0
|
176 |
+
width1 = width
|
177 |
+
width2 = width
|
178 |
+
if x + width > image_width: width1 = image_width - x
|
179 |
+
if y + width > image_height: width2 = image_height - y
|
180 |
+
width = min(width1, width2)
|
181 |
+
# the max hand box value is 20 pixels
|
182 |
+
if width >= 20:
|
183 |
+
detect_result.append([int(x), int(y), int(width), is_left])
|
184 |
+
|
185 |
+
'''
|
186 |
+
return value: [[x, y, w, True if left hand else False]].
|
187 |
+
width=height since the network require squared input.
|
188 |
+
x, y is the coordinate of top left
|
189 |
+
'''
|
190 |
+
return detect_result
|
191 |
+
|
192 |
+
# get max index of 2d array
|
193 |
+
def npmax(array):
|
194 |
+
arrayindex = array.argmax(1)
|
195 |
+
arrayvalue = array.max(1)
|
196 |
+
i = arrayvalue.argmax()
|
197 |
+
j = arrayindex[i]
|
198 |
+
return i, j
|
test.png
ADDED
test_full2.jpg
ADDED