Spaces:
Runtime error
Runtime error
""" | |
tree-segmentation | |
Proof of concept showing effectiveness of a fine tuned instance segmentation model for detecting trees. | |
""" | |
import os | |
import cv2 | |
os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'") | |
from transformers import DetrFeatureExtractor, DetrForSegmentation | |
from PIL import Image | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torchvision | |
import detectron2 | |
# import some common detectron2 utilities | |
import itertools | |
import seaborn as sns | |
from detectron2 import model_zoo | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.utils.visualizer import ColorMode | |
from detectron2.data import MetadataCatalog, DatasetCatalog | |
from detectron2.checkpoint import DetectionCheckpointer | |
cfg = get_cfg() | |
cfg.merge_from_file("model_weights/treev1_cfg.yaml") | |
cfg.MODEL.DEVICE='cpu' | |
cfg.MODEL.WEIGHTS = "model_weights/treev1_best.pth" | |
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 | |
def segment_image(im, confidence_threshold): | |
# cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.25 | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold | |
predictor = DefaultPredictor(cfg) | |
im = np.array(im) | |
outputs = predictor(im) | |
v = Visualizer(im[:, :, ::-1], | |
scale=0.5, | |
instance_mode=ColorMode.SEGMENTATION | |
) | |
print(len(outputs["instances"])," trees detected.") | |
out = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
return Image.fromarray(out.get_image()[:, :, ::-1]) | |
# gradio components | |
gr_slider_confidence = gr.inputs.Slider(0,1,.1,.7, | |
label='Set confidence threshold % for masks') | |
# gradio outputs | |
inputs = gr.inputs.Image(type="pil", label="Input Image") | |
outputs = gr.outputs.Image(type="pil", label="Output Image") | |
title = "Tree Segmentation" | |
description = "An instance segmentation demo for identifying trees in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone" | |
# Create user interface and launch | |
gr.Interface(segment_image, | |
inputs = [inputs, gr_slider_confidence], | |
outputs = outputs, | |
title = title, | |
description = description).launch(debug=True) |