xwl0809's picture
Update app.py
de5ee51
"""
tree-segmentation
Proof of concept showing effectiveness of a fine tuned instance segmentation model for detecting trees.
"""
import os
import cv2
os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
from transformers import DetrFeatureExtractor, DetrForSegmentation
from PIL import Image
import gradio as gr
import numpy as np
import torch
import torchvision
import detectron2
# import some common detectron2 utilities
import itertools
import seaborn as sns
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.utils.visualizer import ColorMode
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.checkpoint import DetectionCheckpointer
cfg = get_cfg()
cfg.merge_from_file("model_weights/treev1_cfg.yaml")
cfg.MODEL.DEVICE='cpu'
cfg.MODEL.WEIGHTS = "model_weights/treev1_best.pth"
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
def segment_image(im, confidence_threshold):
# cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.25
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold
predictor = DefaultPredictor(cfg)
im = np.array(im)
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],
scale=0.5,
instance_mode=ColorMode.SEGMENTATION
)
print(len(outputs["instances"])," trees detected.")
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
return Image.fromarray(out.get_image()[:, :, ::-1])
# gradio components
gr_slider_confidence = gr.inputs.Slider(0,1,.1,.7,
label='Set confidence threshold % for masks')
# gradio outputs
inputs = gr.inputs.Image(type="pil", label="Input Image")
outputs = gr.outputs.Image(type="pil", label="Output Image")
title = "Tree Segmentation"
description = "An instance segmentation demo for identifying trees in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone"
# Create user interface and launch
gr.Interface(segment_image,
inputs = [inputs, gr_slider_confidence],
outputs = outputs,
title = title,
description = description).launch(debug=True)