Spaces:
Runtime error
Runtime error
""" | |
building-segmentation | |
Proof of concept showing effectiveness of a fine tuned instance segmentation model for deteting buildings. | |
""" | |
from transformers import DetrFeatureExtractor, DetrForSegmentation | |
from PIL import Image | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torchvision | |
import detectron2 | |
import itertools | |
import seaborn as sns | |
cfg = get_cfg() | |
def segment_buildings(input_image, confidence): | |
cfg.MODEL.WEIGHTS = "model_weights/chatswood_buildings_poc.pth" | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set a custom testing threshold | |
predictor = DefaultPredictor(cfg) | |
outputs = predictor(im) | |
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2) | |
output = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
output_image = output.get_image()[:, :, ::-1]) | |
return(output_image) | |
# gradio components -inputs | |
gr_image_input = gr.inputs.Image() | |
gr_slider_confidence = gr.inputs.Slider(0,1,.1,.7, | |
label='Set confidence threshold % for masks') | |
# gradio outputs | |
gr_image_output = gr.outputs.Image() | |
# Create user interface and launch | |
gr.Interface(predict_building_mask, | |
inputs = [gr_image_input,gr_slider_confidence], | |
outputs = gr_image_output, | |
title = 'Building Segmentation', | |
description = "An instance segmentation webapp using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone").launch() | |