hlydecker commited on
Commit
ef7cf07
1 Parent(s): 13dee52

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -9
app.py CHANGED
@@ -31,14 +31,15 @@ cfg.MODEL.WEIGHTS = "model_weights/chatswood_buildings_poc.pth"
31
  cfg.MODEL.ROI_HEADS.NUM_CLASSES = 8
32
  predictor = DefaultPredictor(cfg)
33
 
34
- def segment_buildings(inp):
35
 
36
- im = cv2.imread(inp)
37
  outputs = predictor(im)
38
  v = Visualizer(im[:, :, ::-1],
39
  scale=0.5,
40
  instance_mode=ColorMode.IMAGE_BW
41
  )
 
42
  out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
43
 
44
  return Image.fromarray(out.get_image()[:, :, ::-1])
@@ -49,16 +50,14 @@ gr_slider_confidence = gr.inputs.Slider(0,1,.1,.7,
49
  label='Set confidence threshold % for masks')
50
  """
51
  # gradio outputs
52
- # inputs = gr.inputs.Image(type="pil", label="Input Image")
53
- # outputs = gr.outputs.Image(type="pil", label="Output Image")
54
 
55
  title = "Building Segmentation"
56
  description = "An instance segmentation demo for identifying boundaries of buildings in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone"
57
 
58
  # Create user interface and launch
59
  gr.Interface(segment_buildings,
60
- inputs = "image",
61
- outputs = "image",
62
- title = title,
63
- enable_queue = True,
64
- description = description).launch()
 
31
  cfg.MODEL.ROI_HEADS.NUM_CLASSES = 8
32
  predictor = DefaultPredictor(cfg)
33
 
34
+ def segment_buildings(im):
35
 
36
+ im = np.array(im)
37
  outputs = predictor(im)
38
  v = Visualizer(im[:, :, ::-1],
39
  scale=0.5,
40
  instance_mode=ColorMode.IMAGE_BW
41
  )
42
+ print(len(outputs["instances"])," buildings detected.")
43
  out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
44
 
45
  return Image.fromarray(out.get_image()[:, :, ::-1])
 
50
  label='Set confidence threshold % for masks')
51
  """
52
  # gradio outputs
53
+ inputs = gr.inputs.Image(type="pil", label="Input Image")
54
+ outputs = gr.outputs.Image(type="pil", label="Output Image")
55
 
56
  title = "Building Segmentation"
57
  description = "An instance segmentation demo for identifying boundaries of buildings in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone"
58
 
59
  # Create user interface and launch
60
  gr.Interface(segment_buildings,
61
+ inputs = inputs,
62
+ outputs = outputs,
63
+ description = description).launch(debug=True)