Spaces:
Runtime error
Runtime error
xinwei89
commited on
Commit
·
cc6b299
1
Parent(s):
d4def87
bug fix
Browse files- backend.py +1 -2
backend.py
CHANGED
@@ -46,7 +46,6 @@ building_predictor = DefaultPredictor(building_cfg)
|
|
46 |
# A function that runs the buildings model on an given image and confidence threshold
|
47 |
def segment_building(im, confidence_threshold):
|
48 |
building_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold
|
49 |
-
im = np.array(im)
|
50 |
outputs = building_predictor(im)
|
51 |
building_instances = outputs["instances"].to("cpu")
|
52 |
|
@@ -55,7 +54,6 @@ def segment_building(im, confidence_threshold):
|
|
55 |
# A function that runs the trees model on an given image and confidence threshold
|
56 |
def segment_tree(im, confidence_threshold):
|
57 |
tree_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold
|
58 |
-
im = np.array(im)
|
59 |
outputs = tree_predictor(im)
|
60 |
tree_instances = outputs["instances"].to("cpu")
|
61 |
|
@@ -71,6 +69,7 @@ def map_color_mode(color_mode):
|
|
71 |
return ColorMode.SEGMENTATION
|
72 |
|
73 |
def visualize_image(im, mode, tree_threshold, building_threshold, color_mode=ColorMode.SEGMENTATION):
|
|
|
74 |
color_mode = map_color_mode(color_mode)
|
75 |
|
76 |
if mode == "Trees":
|
|
|
46 |
# A function that runs the buildings model on an given image and confidence threshold
|
47 |
def segment_building(im, confidence_threshold):
|
48 |
building_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold
|
|
|
49 |
outputs = building_predictor(im)
|
50 |
building_instances = outputs["instances"].to("cpu")
|
51 |
|
|
|
54 |
# A function that runs the trees model on an given image and confidence threshold
|
55 |
def segment_tree(im, confidence_threshold):
|
56 |
tree_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold
|
|
|
57 |
outputs = tree_predictor(im)
|
58 |
tree_instances = outputs["instances"].to("cpu")
|
59 |
|
|
|
69 |
return ColorMode.SEGMENTATION
|
70 |
|
71 |
def visualize_image(im, mode, tree_threshold, building_threshold, color_mode=ColorMode.SEGMENTATION):
|
72 |
+
im = np.array(im)
|
73 |
color_mode = map_color_mode(color_mode)
|
74 |
|
75 |
if mode == "Trees":
|