xinwei89 commited on
Commit
45a81a5
1 Parent(s): 74373c9

get predict meta

Browse files
Files changed (2) hide show
  1. app.py +6 -6
  2. backend.py +7 -7
app.py CHANGED
@@ -2,15 +2,15 @@ import gradio as gr
2
  from backend import visualize_image
3
 
4
  # gradio inputs
5
- image_input = gr.inputs.Image(type="pil", label="Input Image")
6
- color_mode_select = gr.inputs.Radio(["Black/white", "Random", "Segmentation"], label="Color Mode", default="Segmentation")
7
- mode_dropdown = gr.inputs.Dropdown(["Trees", "Buildings", "Both"], label="Detection Mode", default="Both")
8
 
9
- tree_threshold_slider = gr.inputs.Slider(0, 1, 0.1, 0.7, label='Set confidence threshold "%" for trees')
10
- building_threshold_slider = gr.inputs.Slider(0, 1, 0.1, 0.7, label='Set confidence threshold "%" for buildings')
11
 
12
  # gradio outputs
13
- output_image = gr.outputs.Image(type="pil", label="Output Image")
14
  title = "Aerial Image Segmentation"
15
  description = "An instance segmentation demo for identifying boundaries of buildings and trees in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone"
16
 
 
2
  from backend import visualize_image
3
 
4
  # gradio inputs
5
+ image_input = gr.components.Image(type="pil", label="Input Image")
6
+ color_mode_select = gr.components.Radio(["Black/white", "Random", "Segmentation"], label="Color Mode", default="Segmentation")
7
+ mode_dropdown = gr.components.Dropdown(["Trees", "Buildings", "Both"], label="Detection Mode", default="Both")
8
 
9
+ tree_threshold_slider = gr.components.Slider(0, 1, 0.1, 0.7, label='Set confidence threshold "%" for trees')
10
+ building_threshold_slider = gr.components.Slider(0, 1, 0.1, 0.7, label='Set confidence threshold "%" for buildings')
11
 
12
  # gradio outputs
13
+ output_image = gr.components.Image(type="pil", label="Output Image")
14
  title = "Aerial Image Segmentation"
15
  description = "An instance segmentation demo for identifying boundaries of buildings and trees in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone"
16
 
backend.py CHANGED
@@ -81,18 +81,18 @@ def visualize_image(im, mode="BOTH", tree_threshold=0.7, building_threshold=0.7,
81
  building_instances = segment_building(im, building_threshold)
82
  instances = Instances.cat([tree_instances, building_instances])
83
 
84
- meta = MetadataCatalog.get("predict")
 
 
85
 
86
  visualizer = Visualizer(im[:, :, ::-1],
87
- metadata=meta,
88
  scale=0.5,
89
  instance_mode=color_mode)
90
 
91
- dataset_names = MetadataCatalog.list()
92
- print(dataset_names)
93
- metadata = MetadataCatalog.get(dataset_names[0])
94
- print("metadata", type(metadata), metadata)
95
- print('metadata.get("thing_classes")', type(metadata.get("thing_classes")), metadata.get("thing_classes"))
96
  # category_names = metadata.get("thing_classes")
97
  # visualizer = Visualizer(im[:, :, ::-1],
98
  # metadata=metadata,
 
81
  building_instances = segment_building(im, building_threshold)
82
  instances = Instances.cat([tree_instances, building_instances])
83
 
84
+ metadata = MetadataCatalog.get("predict")
85
+ print("metadata", type(metadata), metadata)
86
+ print('metadata.get("thing_classes")', type(metadata.get("thing_classes")), metadata.get("thing_classes"))
87
 
88
  visualizer = Visualizer(im[:, :, ::-1],
89
+ metadata=metadata,
90
  scale=0.5,
91
  instance_mode=color_mode)
92
 
93
+ # dataset_names = MetadataCatalog.list()
94
+ # print(dataset_names)
95
+
 
 
96
  # category_names = metadata.get("thing_classes")
97
  # visualizer = Visualizer(im[:, :, ::-1],
98
  # metadata=metadata,