Upload 15 files
Browse files- apps/third_party/LGM/.gitignore +8 -0
- apps/third_party/LGM/README.md +71 -0
- apps/third_party/LGM/__pycache__/mv_unet.cpython-310.pyc +0 -0
- apps/third_party/LGM/__pycache__/mv_unet.cpython-38.pyc +0 -0
- apps/third_party/LGM/__pycache__/pipeline_mvdream.cpython-310.pyc +0 -0
- apps/third_party/LGM/__pycache__/pipeline_mvdream.cpython-38.pyc +0 -0
- apps/third_party/LGM/convert_mvdream_to_diffusers.py +597 -0
- apps/third_party/LGM/data/anya_rgba.png +0 -0
- apps/third_party/LGM/data/corgi.jpg +0 -0
- apps/third_party/LGM/mv_unet.py +1005 -0
- apps/third_party/LGM/pipeline_mvdream.py +557 -0
- apps/third_party/LGM/requirements.lock.txt +7 -0
- apps/third_party/LGM/requirements.txt +9 -0
- apps/third_party/LGM/run_imagedream.py +34 -0
- apps/third_party/LGM/run_mvdream.py +33 -0
apps/third_party/LGM/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.pt
|
2 |
+
*.yaml
|
3 |
+
**/__pycache__
|
4 |
+
*.pyc
|
5 |
+
|
6 |
+
weights*
|
7 |
+
models
|
8 |
+
sd-v2*
|
apps/third_party/LGM/README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MVDream-diffusers
|
2 |
+
|
3 |
+
A **unified** diffusers implementation of [MVDream](https://github.com/bytedance/MVDream) and [ImageDream](https://github.com/bytedance/ImageDream).
|
4 |
+
|
5 |
+
We provide converted `fp16` weights on huggingface:
|
6 |
+
* [MVDream](https://huggingface.co/ashawkey/mvdream-sd2.1-diffusers)
|
7 |
+
* [ImageDream](https://huggingface.co/ashawkey/imagedream-ipmv-diffusers)
|
8 |
+
|
9 |
+
|
10 |
+
### Install
|
11 |
+
```bash
|
12 |
+
# dependency
|
13 |
+
pip install -r requirements.txt
|
14 |
+
|
15 |
+
# xformers is required! please refer to https://github.com/facebookresearch/xformers
|
16 |
+
pip install ninja
|
17 |
+
pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers
|
18 |
+
```
|
19 |
+
|
20 |
+
### Usage
|
21 |
+
|
22 |
+
```bash
|
23 |
+
python run_mvdream.py "a cute owl"
|
24 |
+
python run_imagedream.py data/anya_rgba.png
|
25 |
+
```
|
26 |
+
|
27 |
+
### Convert weights
|
28 |
+
|
29 |
+
MVDream:
|
30 |
+
```bash
|
31 |
+
# download original ckpt (we only support the SD 2.1 version)
|
32 |
+
mkdir models
|
33 |
+
cd models
|
34 |
+
wget https://huggingface.co/MVDream/MVDream/resolve/main/sd-v2.1-base-4view.pt
|
35 |
+
wget https://raw.githubusercontent.com/bytedance/MVDream/main/mvdream/configs/sd-v2-base.yaml
|
36 |
+
cd ..
|
37 |
+
|
38 |
+
# convert
|
39 |
+
python convert_mvdream_to_diffusers.py --checkpoint_path models/sd-v2.1-base-4view.pt --dump_path ./weights_mvdream --original_config_file models/sd-v2-base.yaml --half --to_safetensors --test
|
40 |
+
```
|
41 |
+
|
42 |
+
ImageDream:
|
43 |
+
```bash
|
44 |
+
# download original ckpt (we only support the pixel-controller version)
|
45 |
+
cd models
|
46 |
+
wget https://huggingface.co/Peng-Wang/ImageDream/resolve/main/sd-v2.1-base-4view-ipmv.pt
|
47 |
+
wget https://raw.githubusercontent.com/bytedance/ImageDream/main/extern/ImageDream/imagedream/configs/sd_v2_base_ipmv.yaml
|
48 |
+
cd ..
|
49 |
+
|
50 |
+
# convert
|
51 |
+
python convert_mvdream_to_diffusers.py --checkpoint_path models/sd-v2.1-base-4view-ipmv.pt --dump_path ./weights_imagedream --original_config_file models/sd_v2_base_ipmv.yaml --half --to_safetensors --test
|
52 |
+
```
|
53 |
+
|
54 |
+
### Acknowledgement
|
55 |
+
|
56 |
+
* The original papers:
|
57 |
+
```bibtex
|
58 |
+
@article{shi2023MVDream,
|
59 |
+
author = {Shi, Yichun and Wang, Peng and Ye, Jianglong and Mai, Long and Li, Kejie and Yang, Xiao},
|
60 |
+
title = {MVDream: Multi-view Diffusion for 3D Generation},
|
61 |
+
journal = {arXiv:2308.16512},
|
62 |
+
year = {2023},
|
63 |
+
}
|
64 |
+
@article{wang2023imagedream,
|
65 |
+
title={ImageDream: Image-Prompt Multi-view Diffusion for 3D Generation},
|
66 |
+
author={Wang, Peng and Shi, Yichun},
|
67 |
+
journal={arXiv preprint arXiv:2312.02201},
|
68 |
+
year={2023}
|
69 |
+
}
|
70 |
+
```
|
71 |
+
* This codebase is modified from [mvdream-hf](https://github.com/KokeCacao/mvdream-hf).
|
apps/third_party/LGM/__pycache__/mv_unet.cpython-310.pyc
ADDED
Binary file (23.4 kB). View file
|
|
apps/third_party/LGM/__pycache__/mv_unet.cpython-38.pyc
ADDED
Binary file (23.6 kB). View file
|
|
apps/third_party/LGM/__pycache__/pipeline_mvdream.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|
apps/third_party/LGM/__pycache__/pipeline_mvdream.cpython-38.pyc
ADDED
Binary file (15.7 kB). View file
|
|
apps/third_party/LGM/convert_mvdream_to_diffusers.py
ADDED
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from https://github.com/huggingface/diffusers/blob/bc691231360a4cbc7d19a58742ebb8ed0f05e027/scripts/convert_original_stable_diffusion_to_diffusers.py
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import torch
|
5 |
+
import sys
|
6 |
+
|
7 |
+
sys.path.insert(0, ".")
|
8 |
+
|
9 |
+
from diffusers.models import (
|
10 |
+
AutoencoderKL,
|
11 |
+
)
|
12 |
+
from omegaconf import OmegaConf
|
13 |
+
from diffusers.schedulers import DDIMScheduler
|
14 |
+
from diffusers.utils import logging
|
15 |
+
from typing import Any
|
16 |
+
from accelerate import init_empty_weights
|
17 |
+
from accelerate.utils import set_module_tensor_to_device
|
18 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor
|
19 |
+
|
20 |
+
from mv_unet import MultiViewUNetModel
|
21 |
+
from pipeline_mvdream import MVDreamPipeline
|
22 |
+
import kiui
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
def assign_to_checkpoint(
|
28 |
+
paths,
|
29 |
+
checkpoint,
|
30 |
+
old_checkpoint,
|
31 |
+
attention_paths_to_split=None,
|
32 |
+
additional_replacements=None,
|
33 |
+
config=None,
|
34 |
+
):
|
35 |
+
"""
|
36 |
+
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
|
37 |
+
attention layers, and takes into account additional replacements that may arise.
|
38 |
+
Assigns the weights to the new checkpoint.
|
39 |
+
"""
|
40 |
+
assert isinstance(
|
41 |
+
paths, list
|
42 |
+
), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
43 |
+
|
44 |
+
# Splits the attention layers into three variables.
|
45 |
+
if attention_paths_to_split is not None:
|
46 |
+
for path, path_map in attention_paths_to_split.items():
|
47 |
+
old_tensor = old_checkpoint[path]
|
48 |
+
channels = old_tensor.shape[0] // 3
|
49 |
+
|
50 |
+
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
51 |
+
|
52 |
+
assert config is not None
|
53 |
+
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
54 |
+
|
55 |
+
old_tensor = old_tensor.reshape(
|
56 |
+
(num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]
|
57 |
+
)
|
58 |
+
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
59 |
+
|
60 |
+
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
61 |
+
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
62 |
+
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
63 |
+
|
64 |
+
for path in paths:
|
65 |
+
new_path = path["new"]
|
66 |
+
|
67 |
+
# These have already been assigned
|
68 |
+
if (
|
69 |
+
attention_paths_to_split is not None
|
70 |
+
and new_path in attention_paths_to_split
|
71 |
+
):
|
72 |
+
continue
|
73 |
+
|
74 |
+
# Global renaming happens here
|
75 |
+
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
76 |
+
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
77 |
+
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
78 |
+
|
79 |
+
if additional_replacements is not None:
|
80 |
+
for replacement in additional_replacements:
|
81 |
+
new_path = new_path.replace(replacement["old"], replacement["new"])
|
82 |
+
|
83 |
+
# proj_attn.weight has to be converted from conv 1D to linear
|
84 |
+
is_attn_weight = "proj_attn.weight" in new_path or (
|
85 |
+
"attentions" in new_path and "to_" in new_path
|
86 |
+
)
|
87 |
+
shape = old_checkpoint[path["old"]].shape
|
88 |
+
if is_attn_weight and len(shape) == 3:
|
89 |
+
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
90 |
+
elif is_attn_weight and len(shape) == 4:
|
91 |
+
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
|
92 |
+
else:
|
93 |
+
checkpoint[new_path] = old_checkpoint[path["old"]]
|
94 |
+
|
95 |
+
|
96 |
+
def shave_segments(path, n_shave_prefix_segments=1):
|
97 |
+
"""
|
98 |
+
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
99 |
+
"""
|
100 |
+
if n_shave_prefix_segments >= 0:
|
101 |
+
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
102 |
+
else:
|
103 |
+
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
104 |
+
|
105 |
+
|
106 |
+
def create_vae_diffusers_config(original_config, image_size):
|
107 |
+
"""
|
108 |
+
Creates a config for the diffusers based on the config of the LDM model.
|
109 |
+
"""
|
110 |
+
|
111 |
+
|
112 |
+
if 'imagedream' in original_config.model.target:
|
113 |
+
vae_params = original_config.model.params.vae_config.params.ddconfig
|
114 |
+
_ = original_config.model.params.vae_config.params.embed_dim
|
115 |
+
vae_key = "vae_model."
|
116 |
+
else:
|
117 |
+
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
118 |
+
_ = original_config.model.params.first_stage_config.params.embed_dim
|
119 |
+
vae_key = "first_stage_model."
|
120 |
+
|
121 |
+
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
|
122 |
+
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
123 |
+
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
124 |
+
|
125 |
+
config = {
|
126 |
+
"sample_size": image_size,
|
127 |
+
"in_channels": vae_params.in_channels,
|
128 |
+
"out_channels": vae_params.out_ch,
|
129 |
+
"down_block_types": tuple(down_block_types),
|
130 |
+
"up_block_types": tuple(up_block_types),
|
131 |
+
"block_out_channels": tuple(block_out_channels),
|
132 |
+
"latent_channels": vae_params.z_channels,
|
133 |
+
"layers_per_block": vae_params.num_res_blocks,
|
134 |
+
}
|
135 |
+
return config, vae_key
|
136 |
+
|
137 |
+
|
138 |
+
def convert_ldm_vae_checkpoint(checkpoint, config, vae_key):
|
139 |
+
# extract state dict for VAE
|
140 |
+
vae_state_dict = {}
|
141 |
+
keys = list(checkpoint.keys())
|
142 |
+
for key in keys:
|
143 |
+
if key.startswith(vae_key):
|
144 |
+
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
145 |
+
|
146 |
+
new_checkpoint = {}
|
147 |
+
|
148 |
+
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
149 |
+
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
150 |
+
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[
|
151 |
+
"encoder.conv_out.weight"
|
152 |
+
]
|
153 |
+
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
154 |
+
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[
|
155 |
+
"encoder.norm_out.weight"
|
156 |
+
]
|
157 |
+
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[
|
158 |
+
"encoder.norm_out.bias"
|
159 |
+
]
|
160 |
+
|
161 |
+
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
162 |
+
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
163 |
+
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[
|
164 |
+
"decoder.conv_out.weight"
|
165 |
+
]
|
166 |
+
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
167 |
+
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[
|
168 |
+
"decoder.norm_out.weight"
|
169 |
+
]
|
170 |
+
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[
|
171 |
+
"decoder.norm_out.bias"
|
172 |
+
]
|
173 |
+
|
174 |
+
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
175 |
+
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
176 |
+
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
177 |
+
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
178 |
+
|
179 |
+
# Retrieves the keys for the encoder down blocks only
|
180 |
+
num_down_blocks = len(
|
181 |
+
{
|
182 |
+
".".join(layer.split(".")[:3])
|
183 |
+
for layer in vae_state_dict
|
184 |
+
if "encoder.down" in layer
|
185 |
+
}
|
186 |
+
)
|
187 |
+
down_blocks = {
|
188 |
+
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key]
|
189 |
+
for layer_id in range(num_down_blocks)
|
190 |
+
}
|
191 |
+
|
192 |
+
# Retrieves the keys for the decoder up blocks only
|
193 |
+
num_up_blocks = len(
|
194 |
+
{
|
195 |
+
".".join(layer.split(".")[:3])
|
196 |
+
for layer in vae_state_dict
|
197 |
+
if "decoder.up" in layer
|
198 |
+
}
|
199 |
+
)
|
200 |
+
up_blocks = {
|
201 |
+
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key]
|
202 |
+
for layer_id in range(num_up_blocks)
|
203 |
+
}
|
204 |
+
|
205 |
+
for i in range(num_down_blocks):
|
206 |
+
resnets = [
|
207 |
+
key
|
208 |
+
for key in down_blocks[i]
|
209 |
+
if f"down.{i}" in key and f"down.{i}.downsample" not in key
|
210 |
+
]
|
211 |
+
|
212 |
+
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
213 |
+
new_checkpoint[
|
214 |
+
f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"
|
215 |
+
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
|
216 |
+
new_checkpoint[
|
217 |
+
f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"
|
218 |
+
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")
|
219 |
+
|
220 |
+
paths = renew_vae_resnet_paths(resnets)
|
221 |
+
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
222 |
+
assign_to_checkpoint(
|
223 |
+
paths,
|
224 |
+
new_checkpoint,
|
225 |
+
vae_state_dict,
|
226 |
+
additional_replacements=[meta_path],
|
227 |
+
config=config,
|
228 |
+
)
|
229 |
+
|
230 |
+
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
231 |
+
num_mid_res_blocks = 2
|
232 |
+
for i in range(1, num_mid_res_blocks + 1):
|
233 |
+
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
234 |
+
|
235 |
+
paths = renew_vae_resnet_paths(resnets)
|
236 |
+
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
237 |
+
assign_to_checkpoint(
|
238 |
+
paths,
|
239 |
+
new_checkpoint,
|
240 |
+
vae_state_dict,
|
241 |
+
additional_replacements=[meta_path],
|
242 |
+
config=config,
|
243 |
+
)
|
244 |
+
|
245 |
+
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
246 |
+
paths = renew_vae_attention_paths(mid_attentions)
|
247 |
+
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
248 |
+
assign_to_checkpoint(
|
249 |
+
paths,
|
250 |
+
new_checkpoint,
|
251 |
+
vae_state_dict,
|
252 |
+
additional_replacements=[meta_path],
|
253 |
+
config=config,
|
254 |
+
)
|
255 |
+
conv_attn_to_linear(new_checkpoint)
|
256 |
+
|
257 |
+
for i in range(num_up_blocks):
|
258 |
+
block_id = num_up_blocks - 1 - i
|
259 |
+
resnets = [
|
260 |
+
key
|
261 |
+
for key in up_blocks[block_id]
|
262 |
+
if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
263 |
+
]
|
264 |
+
|
265 |
+
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
266 |
+
new_checkpoint[
|
267 |
+
f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"
|
268 |
+
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
|
269 |
+
new_checkpoint[
|
270 |
+
f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"
|
271 |
+
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]
|
272 |
+
|
273 |
+
paths = renew_vae_resnet_paths(resnets)
|
274 |
+
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
275 |
+
assign_to_checkpoint(
|
276 |
+
paths,
|
277 |
+
new_checkpoint,
|
278 |
+
vae_state_dict,
|
279 |
+
additional_replacements=[meta_path],
|
280 |
+
config=config,
|
281 |
+
)
|
282 |
+
|
283 |
+
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
284 |
+
num_mid_res_blocks = 2
|
285 |
+
for i in range(1, num_mid_res_blocks + 1):
|
286 |
+
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
287 |
+
|
288 |
+
paths = renew_vae_resnet_paths(resnets)
|
289 |
+
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
290 |
+
assign_to_checkpoint(
|
291 |
+
paths,
|
292 |
+
new_checkpoint,
|
293 |
+
vae_state_dict,
|
294 |
+
additional_replacements=[meta_path],
|
295 |
+
config=config,
|
296 |
+
)
|
297 |
+
|
298 |
+
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
299 |
+
paths = renew_vae_attention_paths(mid_attentions)
|
300 |
+
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
301 |
+
assign_to_checkpoint(
|
302 |
+
paths,
|
303 |
+
new_checkpoint,
|
304 |
+
vae_state_dict,
|
305 |
+
additional_replacements=[meta_path],
|
306 |
+
config=config,
|
307 |
+
)
|
308 |
+
conv_attn_to_linear(new_checkpoint)
|
309 |
+
return new_checkpoint
|
310 |
+
|
311 |
+
|
312 |
+
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
313 |
+
"""
|
314 |
+
Updates paths inside resnets to the new naming scheme (local renaming)
|
315 |
+
"""
|
316 |
+
mapping = []
|
317 |
+
for old_item in old_list:
|
318 |
+
new_item = old_item
|
319 |
+
|
320 |
+
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
321 |
+
new_item = shave_segments(
|
322 |
+
new_item, n_shave_prefix_segments=n_shave_prefix_segments
|
323 |
+
)
|
324 |
+
|
325 |
+
mapping.append({"old": old_item, "new": new_item})
|
326 |
+
|
327 |
+
return mapping
|
328 |
+
|
329 |
+
|
330 |
+
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
331 |
+
"""
|
332 |
+
Updates paths inside attentions to the new naming scheme (local renaming)
|
333 |
+
"""
|
334 |
+
mapping = []
|
335 |
+
for old_item in old_list:
|
336 |
+
new_item = old_item
|
337 |
+
|
338 |
+
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
339 |
+
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
340 |
+
|
341 |
+
new_item = new_item.replace("q.weight", "to_q.weight")
|
342 |
+
new_item = new_item.replace("q.bias", "to_q.bias")
|
343 |
+
|
344 |
+
new_item = new_item.replace("k.weight", "to_k.weight")
|
345 |
+
new_item = new_item.replace("k.bias", "to_k.bias")
|
346 |
+
|
347 |
+
new_item = new_item.replace("v.weight", "to_v.weight")
|
348 |
+
new_item = new_item.replace("v.bias", "to_v.bias")
|
349 |
+
|
350 |
+
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
|
351 |
+
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
|
352 |
+
|
353 |
+
new_item = shave_segments(
|
354 |
+
new_item, n_shave_prefix_segments=n_shave_prefix_segments
|
355 |
+
)
|
356 |
+
|
357 |
+
mapping.append({"old": old_item, "new": new_item})
|
358 |
+
|
359 |
+
return mapping
|
360 |
+
|
361 |
+
|
362 |
+
def conv_attn_to_linear(checkpoint):
|
363 |
+
keys = list(checkpoint.keys())
|
364 |
+
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
365 |
+
for key in keys:
|
366 |
+
if ".".join(key.split(".")[-2:]) in attn_keys:
|
367 |
+
if checkpoint[key].ndim > 2:
|
368 |
+
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
369 |
+
elif "proj_attn.weight" in key:
|
370 |
+
if checkpoint[key].ndim > 2:
|
371 |
+
checkpoint[key] = checkpoint[key][:, :, 0]
|
372 |
+
|
373 |
+
|
374 |
+
def create_unet_config(original_config):
|
375 |
+
return OmegaConf.to_container(
|
376 |
+
original_config.model.params.unet_config.params, resolve=True
|
377 |
+
)
|
378 |
+
|
379 |
+
|
380 |
+
def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, device):
|
381 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
382 |
+
# print(f"Checkpoint: {checkpoint.keys()}")
|
383 |
+
torch.cuda.empty_cache()
|
384 |
+
|
385 |
+
original_config = OmegaConf.load(original_config_file)
|
386 |
+
# print(f"Original Config: {original_config}")
|
387 |
+
prediction_type = "epsilon"
|
388 |
+
image_size = 256
|
389 |
+
num_train_timesteps = (
|
390 |
+
getattr(original_config.model.params, "timesteps", None) or 1000
|
391 |
+
)
|
392 |
+
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02
|
393 |
+
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085
|
394 |
+
scheduler = DDIMScheduler(
|
395 |
+
beta_end=beta_end,
|
396 |
+
beta_schedule="scaled_linear",
|
397 |
+
beta_start=beta_start,
|
398 |
+
num_train_timesteps=num_train_timesteps,
|
399 |
+
steps_offset=1,
|
400 |
+
clip_sample=False,
|
401 |
+
set_alpha_to_one=False,
|
402 |
+
prediction_type=prediction_type,
|
403 |
+
)
|
404 |
+
scheduler.register_to_config(clip_sample=False)
|
405 |
+
|
406 |
+
unet_config = create_unet_config(original_config)
|
407 |
+
|
408 |
+
# remove unused configs
|
409 |
+
unet_config.pop('legacy', None)
|
410 |
+
unet_config.pop('use_linear_in_transformer', None)
|
411 |
+
unet_config.pop('use_spatial_transformer', None)
|
412 |
+
|
413 |
+
unet_config.pop('ip_mode', None)
|
414 |
+
unet_config.pop('with_ip', None)
|
415 |
+
|
416 |
+
unet = MultiViewUNetModel(**unet_config)
|
417 |
+
unet.register_to_config(**unet_config)
|
418 |
+
# print(f"Unet State Dict: {unet.state_dict().keys()}")
|
419 |
+
unet.load_state_dict(
|
420 |
+
{
|
421 |
+
key.replace("model.diffusion_model.", ""): value
|
422 |
+
for key, value in checkpoint.items()
|
423 |
+
if key.replace("model.diffusion_model.", "") in unet.state_dict()
|
424 |
+
}
|
425 |
+
)
|
426 |
+
for param_name, param in unet.state_dict().items():
|
427 |
+
set_module_tensor_to_device(unet, param_name, device=device, value=param)
|
428 |
+
|
429 |
+
# Convert the VAE model.
|
430 |
+
vae_config, vae_key = create_vae_diffusers_config(original_config, image_size=image_size)
|
431 |
+
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config, vae_key)
|
432 |
+
|
433 |
+
if (
|
434 |
+
"model" in original_config
|
435 |
+
and "params" in original_config.model
|
436 |
+
and "scale_factor" in original_config.model.params
|
437 |
+
):
|
438 |
+
vae_scaling_factor = original_config.model.params.scale_factor
|
439 |
+
else:
|
440 |
+
vae_scaling_factor = 0.18215 # default SD scaling factor
|
441 |
+
|
442 |
+
vae_config["scaling_factor"] = vae_scaling_factor
|
443 |
+
|
444 |
+
with init_empty_weights():
|
445 |
+
vae = AutoencoderKL(**vae_config)
|
446 |
+
|
447 |
+
for param_name, param in converted_vae_checkpoint.items():
|
448 |
+
set_module_tensor_to_device(vae, param_name, device=device, value=param)
|
449 |
+
|
450 |
+
# we only supports SD 2.1 based model
|
451 |
+
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="tokenizer")
|
452 |
+
text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="text_encoder").to(device=device) # type: ignore
|
453 |
+
|
454 |
+
# imagedream variant
|
455 |
+
if unet.ip_dim > 0:
|
456 |
+
feature_extractor: CLIPImageProcessor = CLIPImageProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
457 |
+
image_encoder: CLIPVisionModel = CLIPVisionModel.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
458 |
+
else:
|
459 |
+
feature_extractor = None
|
460 |
+
image_encoder = None
|
461 |
+
|
462 |
+
pipe = MVDreamPipeline(
|
463 |
+
vae=vae,
|
464 |
+
unet=unet,
|
465 |
+
tokenizer=tokenizer,
|
466 |
+
text_encoder=text_encoder,
|
467 |
+
scheduler=scheduler,
|
468 |
+
feature_extractor=feature_extractor,
|
469 |
+
image_encoder=image_encoder,
|
470 |
+
)
|
471 |
+
|
472 |
+
return pipe
|
473 |
+
|
474 |
+
|
475 |
+
if __name__ == "__main__":
|
476 |
+
parser = argparse.ArgumentParser()
|
477 |
+
|
478 |
+
parser.add_argument(
|
479 |
+
"--checkpoint_path",
|
480 |
+
default=None,
|
481 |
+
type=str,
|
482 |
+
required=True,
|
483 |
+
help="Path to the checkpoint to convert.",
|
484 |
+
)
|
485 |
+
parser.add_argument(
|
486 |
+
"--original_config_file",
|
487 |
+
default=None,
|
488 |
+
type=str,
|
489 |
+
help="The YAML config file corresponding to the original architecture.",
|
490 |
+
)
|
491 |
+
parser.add_argument(
|
492 |
+
"--to_safetensors",
|
493 |
+
action="store_true",
|
494 |
+
help="Whether to store pipeline in safetensors format or not.",
|
495 |
+
)
|
496 |
+
parser.add_argument(
|
497 |
+
"--half", action="store_true", help="Save weights in half precision."
|
498 |
+
)
|
499 |
+
parser.add_argument(
|
500 |
+
"--test",
|
501 |
+
action="store_true",
|
502 |
+
help="Whether to test inference after convertion.",
|
503 |
+
)
|
504 |
+
parser.add_argument(
|
505 |
+
"--dump_path",
|
506 |
+
default=None,
|
507 |
+
type=str,
|
508 |
+
required=True,
|
509 |
+
help="Path to the output model.",
|
510 |
+
)
|
511 |
+
parser.add_argument(
|
512 |
+
"--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)"
|
513 |
+
)
|
514 |
+
args = parser.parse_args()
|
515 |
+
|
516 |
+
args.device = torch.device(
|
517 |
+
args.device
|
518 |
+
if args.device is not None
|
519 |
+
else "cuda"
|
520 |
+
if torch.cuda.is_available()
|
521 |
+
else "cpu"
|
522 |
+
)
|
523 |
+
|
524 |
+
pipe = convert_from_original_mvdream_ckpt(
|
525 |
+
checkpoint_path=args.checkpoint_path,
|
526 |
+
original_config_file=args.original_config_file,
|
527 |
+
device=args.device,
|
528 |
+
)
|
529 |
+
|
530 |
+
if args.half:
|
531 |
+
pipe.to(torch_dtype=torch.float16)
|
532 |
+
|
533 |
+
print(f"Saving pipeline to {args.dump_path}...")
|
534 |
+
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|
535 |
+
|
536 |
+
if args.test:
|
537 |
+
try:
|
538 |
+
# mvdream
|
539 |
+
if pipe.unet.ip_dim == 0:
|
540 |
+
print(f"Testing each subcomponent of the pipeline...")
|
541 |
+
images = pipe(
|
542 |
+
prompt="Head of Hatsune Miku",
|
543 |
+
negative_prompt="painting, bad quality, flat",
|
544 |
+
output_type="pil",
|
545 |
+
guidance_scale=7.5,
|
546 |
+
num_inference_steps=50,
|
547 |
+
device=args.device,
|
548 |
+
)
|
549 |
+
for i, image in enumerate(images):
|
550 |
+
image.save(f"test_image_{i}.png") # type: ignore
|
551 |
+
|
552 |
+
print(f"Testing entire pipeline...")
|
553 |
+
loaded_pipe = MVDreamPipeline.from_pretrained(args.dump_path) # type: ignore
|
554 |
+
images = loaded_pipe(
|
555 |
+
prompt="Head of Hatsune Miku",
|
556 |
+
negative_prompt="painting, bad quality, flat",
|
557 |
+
output_type="pil",
|
558 |
+
guidance_scale=7.5,
|
559 |
+
num_inference_steps=50,
|
560 |
+
device=args.device,
|
561 |
+
)
|
562 |
+
for i, image in enumerate(images):
|
563 |
+
image.save(f"test_image_{i}.png") # type: ignore
|
564 |
+
# imagedream
|
565 |
+
else:
|
566 |
+
input_image = kiui.read_image('data/anya_rgba.png', mode='float')
|
567 |
+
print(f"Testing each subcomponent of the pipeline...")
|
568 |
+
images = pipe(
|
569 |
+
image=input_image,
|
570 |
+
prompt="",
|
571 |
+
negative_prompt="",
|
572 |
+
output_type="pil",
|
573 |
+
guidance_scale=5.0,
|
574 |
+
num_inference_steps=50,
|
575 |
+
device=args.device,
|
576 |
+
)
|
577 |
+
for i, image in enumerate(images):
|
578 |
+
image.save(f"test_image_{i}.png") # type: ignore
|
579 |
+
|
580 |
+
print(f"Testing entire pipeline...")
|
581 |
+
loaded_pipe = MVDreamPipeline.from_pretrained(args.dump_path) # type: ignore
|
582 |
+
images = loaded_pipe(
|
583 |
+
image=input_image,
|
584 |
+
prompt="",
|
585 |
+
negative_prompt="",
|
586 |
+
output_type="pil",
|
587 |
+
guidance_scale=5.0,
|
588 |
+
num_inference_steps=50,
|
589 |
+
device=args.device,
|
590 |
+
)
|
591 |
+
for i, image in enumerate(images):
|
592 |
+
image.save(f"test_image_{i}.png") # type: ignore
|
593 |
+
|
594 |
+
|
595 |
+
print("Inference test passed!")
|
596 |
+
except Exception as e:
|
597 |
+
print(f"Failed to test inference: {e}")
|
apps/third_party/LGM/data/anya_rgba.png
ADDED
apps/third_party/LGM/data/corgi.jpg
ADDED
apps/third_party/LGM/mv_unet.py
ADDED
@@ -0,0 +1,1005 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
from inspect import isfunction
|
4 |
+
from typing import Optional, Any, List
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from einops import rearrange, repeat
|
10 |
+
|
11 |
+
from diffusers.configuration_utils import ConfigMixin
|
12 |
+
from diffusers.models.modeling_utils import ModelMixin
|
13 |
+
|
14 |
+
# require xformers!
|
15 |
+
import xformers
|
16 |
+
import xformers.ops
|
17 |
+
|
18 |
+
from kiui.cam import orbit_camera
|
19 |
+
|
20 |
+
def get_camera(
|
21 |
+
num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True, extra_view=False,
|
22 |
+
):
|
23 |
+
angle_gap = azimuth_span / num_frames
|
24 |
+
cameras = []
|
25 |
+
for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
|
26 |
+
|
27 |
+
pose = orbit_camera(-elevation, azimuth, radius=1) # kiui's elevation is negated, [4, 4]
|
28 |
+
|
29 |
+
# opengl to blender
|
30 |
+
if blender_coord:
|
31 |
+
pose[2] *= -1
|
32 |
+
pose[[1, 2]] = pose[[2, 1]]
|
33 |
+
|
34 |
+
cameras.append(pose.flatten())
|
35 |
+
|
36 |
+
if extra_view:
|
37 |
+
cameras.append(np.zeros_like(cameras[0]))
|
38 |
+
|
39 |
+
return torch.from_numpy(np.stack(cameras, axis=0)).float() # [num_frames, 16]
|
40 |
+
|
41 |
+
|
42 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
43 |
+
"""
|
44 |
+
Create sinusoidal timestep embeddings.
|
45 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
46 |
+
These may be fractional.
|
47 |
+
:param dim: the dimension of the output.
|
48 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
49 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
50 |
+
"""
|
51 |
+
if not repeat_only:
|
52 |
+
half = dim // 2
|
53 |
+
freqs = torch.exp(
|
54 |
+
-math.log(max_period)
|
55 |
+
* torch.arange(start=0, end=half, dtype=torch.float32)
|
56 |
+
/ half
|
57 |
+
).to(device=timesteps.device)
|
58 |
+
args = timesteps[:, None] * freqs[None]
|
59 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
60 |
+
if dim % 2:
|
61 |
+
embedding = torch.cat(
|
62 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
embedding = repeat(timesteps, "b -> b d", d=dim)
|
66 |
+
# import pdb; pdb.set_trace()
|
67 |
+
return embedding
|
68 |
+
|
69 |
+
|
70 |
+
def zero_module(module):
|
71 |
+
"""
|
72 |
+
Zero out the parameters of a module and return it.
|
73 |
+
"""
|
74 |
+
for p in module.parameters():
|
75 |
+
p.detach().zero_()
|
76 |
+
return module
|
77 |
+
|
78 |
+
|
79 |
+
def conv_nd(dims, *args, **kwargs):
|
80 |
+
"""
|
81 |
+
Create a 1D, 2D, or 3D convolution module.
|
82 |
+
"""
|
83 |
+
if dims == 1:
|
84 |
+
return nn.Conv1d(*args, **kwargs)
|
85 |
+
elif dims == 2:
|
86 |
+
return nn.Conv2d(*args, **kwargs)
|
87 |
+
elif dims == 3:
|
88 |
+
return nn.Conv3d(*args, **kwargs)
|
89 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
90 |
+
|
91 |
+
|
92 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
93 |
+
"""
|
94 |
+
Create a 1D, 2D, or 3D average pooling module.
|
95 |
+
"""
|
96 |
+
if dims == 1:
|
97 |
+
return nn.AvgPool1d(*args, **kwargs)
|
98 |
+
elif dims == 2:
|
99 |
+
return nn.AvgPool2d(*args, **kwargs)
|
100 |
+
elif dims == 3:
|
101 |
+
return nn.AvgPool3d(*args, **kwargs)
|
102 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
103 |
+
|
104 |
+
|
105 |
+
def default(val, d):
|
106 |
+
if val is not None:
|
107 |
+
return val
|
108 |
+
return d() if isfunction(d) else d
|
109 |
+
|
110 |
+
|
111 |
+
class GEGLU(nn.Module):
|
112 |
+
def __init__(self, dim_in, dim_out):
|
113 |
+
super().__init__()
|
114 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
118 |
+
return x * F.gelu(gate)
|
119 |
+
|
120 |
+
|
121 |
+
class FeedForward(nn.Module):
|
122 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
123 |
+
super().__init__()
|
124 |
+
inner_dim = int(dim * mult)
|
125 |
+
dim_out = default(dim_out, dim)
|
126 |
+
project_in = (
|
127 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
128 |
+
if not glu
|
129 |
+
else GEGLU(dim, inner_dim)
|
130 |
+
)
|
131 |
+
|
132 |
+
self.net = nn.Sequential(
|
133 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
134 |
+
)
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
return self.net(x)
|
138 |
+
|
139 |
+
|
140 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
141 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
query_dim,
|
145 |
+
context_dim=None,
|
146 |
+
heads=8,
|
147 |
+
dim_head=64,
|
148 |
+
dropout=0.0,
|
149 |
+
ip_dim=0,
|
150 |
+
ip_weight=1,
|
151 |
+
):
|
152 |
+
super().__init__()
|
153 |
+
|
154 |
+
inner_dim = dim_head * heads
|
155 |
+
context_dim = default(context_dim, query_dim)
|
156 |
+
|
157 |
+
self.heads = heads
|
158 |
+
self.dim_head = dim_head
|
159 |
+
|
160 |
+
self.ip_dim = ip_dim
|
161 |
+
self.ip_weight = ip_weight
|
162 |
+
|
163 |
+
if self.ip_dim > 0:
|
164 |
+
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
165 |
+
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
166 |
+
|
167 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
168 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
169 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
170 |
+
|
171 |
+
self.to_out = nn.Sequential(
|
172 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
173 |
+
)
|
174 |
+
self.attention_op = None
|
175 |
+
|
176 |
+
def forward(self, x, context=None):
|
177 |
+
q = self.to_q(x)
|
178 |
+
context = default(context, x)
|
179 |
+
|
180 |
+
if self.ip_dim > 0:
|
181 |
+
# contextοΌ [B, 77 + 16(ip), 1024]
|
182 |
+
token_len = context.shape[1]
|
183 |
+
context_ip = context[:, -self.ip_dim :, :]
|
184 |
+
k_ip = self.to_k_ip(context_ip)
|
185 |
+
v_ip = self.to_v_ip(context_ip)
|
186 |
+
context = context[:, : (token_len - self.ip_dim), :]
|
187 |
+
|
188 |
+
k = self.to_k(context)
|
189 |
+
v = self.to_v(context)
|
190 |
+
|
191 |
+
b, _, _ = q.shape
|
192 |
+
q, k, v = map(
|
193 |
+
lambda t: t.unsqueeze(3)
|
194 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
195 |
+
.permute(0, 2, 1, 3)
|
196 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
197 |
+
.contiguous(),
|
198 |
+
(q, k, v),
|
199 |
+
)
|
200 |
+
|
201 |
+
# actually compute the attention, what we cannot get enough of
|
202 |
+
out = xformers.ops.memory_efficient_attention(
|
203 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
204 |
+
)
|
205 |
+
|
206 |
+
if self.ip_dim > 0:
|
207 |
+
k_ip, v_ip = map(
|
208 |
+
lambda t: t.unsqueeze(3)
|
209 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
210 |
+
.permute(0, 2, 1, 3)
|
211 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
212 |
+
.contiguous(),
|
213 |
+
(k_ip, v_ip),
|
214 |
+
)
|
215 |
+
# actually compute the attention, what we cannot get enough of
|
216 |
+
out_ip = xformers.ops.memory_efficient_attention(
|
217 |
+
q, k_ip, v_ip, attn_bias=None, op=self.attention_op
|
218 |
+
)
|
219 |
+
out = out + self.ip_weight * out_ip
|
220 |
+
|
221 |
+
out = (
|
222 |
+
out.unsqueeze(0)
|
223 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
224 |
+
.permute(0, 2, 1, 3)
|
225 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
226 |
+
)
|
227 |
+
return self.to_out(out)
|
228 |
+
|
229 |
+
|
230 |
+
class BasicTransformerBlock3D(nn.Module):
|
231 |
+
|
232 |
+
def __init__(
|
233 |
+
self,
|
234 |
+
dim,
|
235 |
+
n_heads,
|
236 |
+
d_head,
|
237 |
+
context_dim,
|
238 |
+
dropout=0.0,
|
239 |
+
gated_ff=True,
|
240 |
+
ip_dim=0,
|
241 |
+
ip_weight=1,
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
|
245 |
+
self.attn1 = MemoryEfficientCrossAttention(
|
246 |
+
query_dim=dim,
|
247 |
+
context_dim=None, # self-attention
|
248 |
+
heads=n_heads,
|
249 |
+
dim_head=d_head,
|
250 |
+
dropout=dropout,
|
251 |
+
)
|
252 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
253 |
+
self.attn2 = MemoryEfficientCrossAttention(
|
254 |
+
query_dim=dim,
|
255 |
+
context_dim=context_dim,
|
256 |
+
heads=n_heads,
|
257 |
+
dim_head=d_head,
|
258 |
+
dropout=dropout,
|
259 |
+
# ip only applies to cross-attention
|
260 |
+
ip_dim=ip_dim,
|
261 |
+
ip_weight=ip_weight,
|
262 |
+
)
|
263 |
+
self.norm1 = nn.LayerNorm(dim)
|
264 |
+
self.norm2 = nn.LayerNorm(dim)
|
265 |
+
self.norm3 = nn.LayerNorm(dim)
|
266 |
+
|
267 |
+
def forward(self, x, context=None, num_frames=1):
|
268 |
+
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
|
269 |
+
x = self.attn1(self.norm1(x), context=None) + x
|
270 |
+
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
|
271 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
272 |
+
x = self.ff(self.norm3(x)) + x
|
273 |
+
return x
|
274 |
+
|
275 |
+
|
276 |
+
class SpatialTransformer3D(nn.Module):
|
277 |
+
|
278 |
+
def __init__(
|
279 |
+
self,
|
280 |
+
in_channels,
|
281 |
+
n_heads,
|
282 |
+
d_head,
|
283 |
+
context_dim, # cross attention input dim
|
284 |
+
depth=1,
|
285 |
+
dropout=0.0,
|
286 |
+
ip_dim=0,
|
287 |
+
ip_weight=1,
|
288 |
+
):
|
289 |
+
super().__init__()
|
290 |
+
|
291 |
+
if not isinstance(context_dim, list):
|
292 |
+
context_dim = [context_dim]
|
293 |
+
|
294 |
+
self.in_channels = in_channels
|
295 |
+
|
296 |
+
inner_dim = n_heads * d_head
|
297 |
+
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
298 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
299 |
+
|
300 |
+
self.transformer_blocks = nn.ModuleList(
|
301 |
+
[
|
302 |
+
BasicTransformerBlock3D(
|
303 |
+
inner_dim,
|
304 |
+
n_heads,
|
305 |
+
d_head,
|
306 |
+
context_dim=context_dim[d],
|
307 |
+
dropout=dropout,
|
308 |
+
ip_dim=ip_dim,
|
309 |
+
ip_weight=ip_weight,
|
310 |
+
)
|
311 |
+
for d in range(depth)
|
312 |
+
]
|
313 |
+
)
|
314 |
+
|
315 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
316 |
+
|
317 |
+
|
318 |
+
def forward(self, x, context=None, num_frames=1):
|
319 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
320 |
+
if not isinstance(context, list):
|
321 |
+
context = [context]
|
322 |
+
b, c, h, w = x.shape
|
323 |
+
x_in = x
|
324 |
+
x = self.norm(x)
|
325 |
+
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
326 |
+
x = self.proj_in(x)
|
327 |
+
for i, block in enumerate(self.transformer_blocks):
|
328 |
+
x = block(x, context=context[i], num_frames=num_frames)
|
329 |
+
x = self.proj_out(x)
|
330 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
331 |
+
|
332 |
+
return x + x_in
|
333 |
+
|
334 |
+
|
335 |
+
class PerceiverAttention(nn.Module):
|
336 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
337 |
+
super().__init__()
|
338 |
+
self.scale = dim_head ** -0.5
|
339 |
+
self.dim_head = dim_head
|
340 |
+
self.heads = heads
|
341 |
+
inner_dim = dim_head * heads
|
342 |
+
|
343 |
+
self.norm1 = nn.LayerNorm(dim)
|
344 |
+
self.norm2 = nn.LayerNorm(dim)
|
345 |
+
|
346 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
347 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
348 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
349 |
+
|
350 |
+
def forward(self, x, latents):
|
351 |
+
"""
|
352 |
+
Args:
|
353 |
+
x (torch.Tensor): image features
|
354 |
+
shape (b, n1, D)
|
355 |
+
latent (torch.Tensor): latent features
|
356 |
+
shape (b, n2, D)
|
357 |
+
"""
|
358 |
+
x = self.norm1(x)
|
359 |
+
latents = self.norm2(latents)
|
360 |
+
|
361 |
+
b, l, _ = latents.shape
|
362 |
+
|
363 |
+
q = self.to_q(latents)
|
364 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
365 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
366 |
+
|
367 |
+
q, k, v = map(
|
368 |
+
lambda t: t.reshape(b, t.shape[1], self.heads, -1)
|
369 |
+
.transpose(1, 2)
|
370 |
+
.reshape(b, self.heads, t.shape[1], -1)
|
371 |
+
.contiguous(),
|
372 |
+
(q, k, v),
|
373 |
+
)
|
374 |
+
|
375 |
+
# attention
|
376 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
377 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
378 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
379 |
+
out = weight @ v
|
380 |
+
|
381 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
382 |
+
|
383 |
+
return self.to_out(out)
|
384 |
+
|
385 |
+
|
386 |
+
class Resampler(nn.Module):
|
387 |
+
def __init__(
|
388 |
+
self,
|
389 |
+
dim=1024,
|
390 |
+
depth=8,
|
391 |
+
dim_head=64,
|
392 |
+
heads=16,
|
393 |
+
num_queries=8,
|
394 |
+
embedding_dim=768,
|
395 |
+
output_dim=1024,
|
396 |
+
ff_mult=4,
|
397 |
+
):
|
398 |
+
super().__init__()
|
399 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)
|
400 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
401 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
402 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
403 |
+
|
404 |
+
self.layers = nn.ModuleList([])
|
405 |
+
for _ in range(depth):
|
406 |
+
self.layers.append(
|
407 |
+
nn.ModuleList(
|
408 |
+
[
|
409 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
410 |
+
nn.Sequential(
|
411 |
+
nn.LayerNorm(dim),
|
412 |
+
nn.Linear(dim, dim * ff_mult, bias=False),
|
413 |
+
nn.GELU(),
|
414 |
+
nn.Linear(dim * ff_mult, dim, bias=False),
|
415 |
+
)
|
416 |
+
]
|
417 |
+
)
|
418 |
+
)
|
419 |
+
|
420 |
+
def forward(self, x):
|
421 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
422 |
+
x = self.proj_in(x)
|
423 |
+
for attn, ff in self.layers:
|
424 |
+
latents = attn(x, latents) + latents
|
425 |
+
latents = ff(latents) + latents
|
426 |
+
|
427 |
+
latents = self.proj_out(latents)
|
428 |
+
return self.norm_out(latents)
|
429 |
+
|
430 |
+
|
431 |
+
class CondSequential(nn.Sequential):
|
432 |
+
"""
|
433 |
+
A sequential module that passes timestep embeddings to the children that
|
434 |
+
support it as an extra input.
|
435 |
+
"""
|
436 |
+
|
437 |
+
def forward(self, x, emb, context=None, num_frames=1):
|
438 |
+
for layer in self:
|
439 |
+
if isinstance(layer, ResBlock):
|
440 |
+
x = layer(x, emb)
|
441 |
+
elif isinstance(layer, SpatialTransformer3D):
|
442 |
+
x = layer(x, context, num_frames=num_frames)
|
443 |
+
else:
|
444 |
+
x = layer(x)
|
445 |
+
return x
|
446 |
+
|
447 |
+
|
448 |
+
class Upsample(nn.Module):
|
449 |
+
"""
|
450 |
+
An upsampling layer with an optional convolution.
|
451 |
+
:param channels: channels in the inputs and outputs.
|
452 |
+
:param use_conv: a bool determining if a convolution is applied.
|
453 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
454 |
+
upsampling occurs in the inner-two dimensions.
|
455 |
+
"""
|
456 |
+
|
457 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
458 |
+
super().__init__()
|
459 |
+
self.channels = channels
|
460 |
+
self.out_channels = out_channels or channels
|
461 |
+
self.use_conv = use_conv
|
462 |
+
self.dims = dims
|
463 |
+
if use_conv:
|
464 |
+
self.conv = conv_nd(
|
465 |
+
dims, self.channels, self.out_channels, 3, padding=padding
|
466 |
+
)
|
467 |
+
|
468 |
+
def forward(self, x):
|
469 |
+
assert x.shape[1] == self.channels
|
470 |
+
if self.dims == 3:
|
471 |
+
x = F.interpolate(
|
472 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
473 |
+
)
|
474 |
+
else:
|
475 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
476 |
+
if self.use_conv:
|
477 |
+
x = self.conv(x)
|
478 |
+
return x
|
479 |
+
|
480 |
+
|
481 |
+
class Downsample(nn.Module):
|
482 |
+
"""
|
483 |
+
A downsampling layer with an optional convolution.
|
484 |
+
:param channels: channels in the inputs and outputs.
|
485 |
+
:param use_conv: a bool determining if a convolution is applied.
|
486 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
487 |
+
downsampling occurs in the inner-two dimensions.
|
488 |
+
"""
|
489 |
+
|
490 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
491 |
+
super().__init__()
|
492 |
+
self.channels = channels
|
493 |
+
self.out_channels = out_channels or channels
|
494 |
+
self.use_conv = use_conv
|
495 |
+
self.dims = dims
|
496 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
497 |
+
if use_conv:
|
498 |
+
self.op = conv_nd(
|
499 |
+
dims,
|
500 |
+
self.channels,
|
501 |
+
self.out_channels,
|
502 |
+
3,
|
503 |
+
stride=stride,
|
504 |
+
padding=padding,
|
505 |
+
)
|
506 |
+
else:
|
507 |
+
assert self.channels == self.out_channels
|
508 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
509 |
+
|
510 |
+
def forward(self, x):
|
511 |
+
assert x.shape[1] == self.channels
|
512 |
+
return self.op(x)
|
513 |
+
|
514 |
+
|
515 |
+
class ResBlock(nn.Module):
|
516 |
+
"""
|
517 |
+
A residual block that can optionally change the number of channels.
|
518 |
+
:param channels: the number of input channels.
|
519 |
+
:param emb_channels: the number of timestep embedding channels.
|
520 |
+
:param dropout: the rate of dropout.
|
521 |
+
:param out_channels: if specified, the number of out channels.
|
522 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
523 |
+
convolution instead of a smaller 1x1 convolution to change the
|
524 |
+
channels in the skip connection.
|
525 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
526 |
+
:param up: if True, use this block for upsampling.
|
527 |
+
:param down: if True, use this block for downsampling.
|
528 |
+
"""
|
529 |
+
|
530 |
+
def __init__(
|
531 |
+
self,
|
532 |
+
channels,
|
533 |
+
emb_channels,
|
534 |
+
dropout,
|
535 |
+
out_channels=None,
|
536 |
+
use_conv=False,
|
537 |
+
use_scale_shift_norm=False,
|
538 |
+
dims=2,
|
539 |
+
up=False,
|
540 |
+
down=False,
|
541 |
+
):
|
542 |
+
super().__init__()
|
543 |
+
self.channels = channels
|
544 |
+
self.emb_channels = emb_channels
|
545 |
+
self.dropout = dropout
|
546 |
+
self.out_channels = out_channels or channels
|
547 |
+
self.use_conv = use_conv
|
548 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
549 |
+
|
550 |
+
self.in_layers = nn.Sequential(
|
551 |
+
nn.GroupNorm(32, channels),
|
552 |
+
nn.SiLU(),
|
553 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
554 |
+
)
|
555 |
+
|
556 |
+
self.updown = up or down
|
557 |
+
|
558 |
+
if up:
|
559 |
+
self.h_upd = Upsample(channels, False, dims)
|
560 |
+
self.x_upd = Upsample(channels, False, dims)
|
561 |
+
elif down:
|
562 |
+
self.h_upd = Downsample(channels, False, dims)
|
563 |
+
self.x_upd = Downsample(channels, False, dims)
|
564 |
+
else:
|
565 |
+
self.h_upd = self.x_upd = nn.Identity()
|
566 |
+
|
567 |
+
self.emb_layers = nn.Sequential(
|
568 |
+
nn.SiLU(),
|
569 |
+
nn.Linear(
|
570 |
+
emb_channels,
|
571 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
572 |
+
),
|
573 |
+
)
|
574 |
+
self.out_layers = nn.Sequential(
|
575 |
+
nn.GroupNorm(32, self.out_channels),
|
576 |
+
nn.SiLU(),
|
577 |
+
nn.Dropout(p=dropout),
|
578 |
+
zero_module(
|
579 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
580 |
+
),
|
581 |
+
)
|
582 |
+
|
583 |
+
if self.out_channels == channels:
|
584 |
+
self.skip_connection = nn.Identity()
|
585 |
+
elif use_conv:
|
586 |
+
self.skip_connection = conv_nd(
|
587 |
+
dims, channels, self.out_channels, 3, padding=1
|
588 |
+
)
|
589 |
+
else:
|
590 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
591 |
+
|
592 |
+
def forward(self, x, emb):
|
593 |
+
if self.updown:
|
594 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
595 |
+
h = in_rest(x)
|
596 |
+
h = self.h_upd(h)
|
597 |
+
x = self.x_upd(x)
|
598 |
+
h = in_conv(h)
|
599 |
+
else:
|
600 |
+
h = self.in_layers(x)
|
601 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
602 |
+
while len(emb_out.shape) < len(h.shape):
|
603 |
+
emb_out = emb_out[..., None]
|
604 |
+
if self.use_scale_shift_norm:
|
605 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
606 |
+
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
607 |
+
h = out_norm(h) * (1 + scale) + shift
|
608 |
+
h = out_rest(h)
|
609 |
+
else:
|
610 |
+
h = h + emb_out
|
611 |
+
h = self.out_layers(h)
|
612 |
+
return self.skip_connection(x) + h
|
613 |
+
|
614 |
+
|
615 |
+
class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
616 |
+
"""
|
617 |
+
The full multi-view UNet model with attention, timestep embedding and camera embedding.
|
618 |
+
:param in_channels: channels in the input Tensor.
|
619 |
+
:param model_channels: base channel count for the model.
|
620 |
+
:param out_channels: channels in the output Tensor.
|
621 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
622 |
+
:param attention_resolutions: a collection of downsample rates at which
|
623 |
+
attention will take place. May be a set, list, or tuple.
|
624 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
625 |
+
will be used.
|
626 |
+
:param dropout: the dropout probability.
|
627 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
628 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
629 |
+
downsampling.
|
630 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
631 |
+
:param num_classes: if specified (as an int), then this model will be
|
632 |
+
class-conditional with `num_classes` classes.
|
633 |
+
:param num_heads: the number of attention heads in each attention layer.
|
634 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
635 |
+
a fixed channel width per attention head.
|
636 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
637 |
+
of heads for upsampling. Deprecated.
|
638 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
639 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
640 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
641 |
+
increased efficiency.
|
642 |
+
:param camera_dim: dimensionality of camera input.
|
643 |
+
"""
|
644 |
+
|
645 |
+
def __init__(
|
646 |
+
self,
|
647 |
+
image_size,
|
648 |
+
in_channels,
|
649 |
+
model_channels,
|
650 |
+
out_channels,
|
651 |
+
num_res_blocks,
|
652 |
+
attention_resolutions,
|
653 |
+
dropout=0,
|
654 |
+
channel_mult=(1, 2, 4, 8),
|
655 |
+
conv_resample=True,
|
656 |
+
dims=2,
|
657 |
+
num_classes=None,
|
658 |
+
num_heads=-1,
|
659 |
+
num_head_channels=-1,
|
660 |
+
num_heads_upsample=-1,
|
661 |
+
use_scale_shift_norm=False,
|
662 |
+
resblock_updown=False,
|
663 |
+
transformer_depth=1,
|
664 |
+
context_dim=None,
|
665 |
+
n_embed=None,
|
666 |
+
num_attention_blocks=None,
|
667 |
+
adm_in_channels=None,
|
668 |
+
camera_dim=None,
|
669 |
+
ip_dim=0, # imagedream uses ip_dim > 0
|
670 |
+
ip_weight=1.0,
|
671 |
+
**kwargs,
|
672 |
+
):
|
673 |
+
super().__init__()
|
674 |
+
assert context_dim is not None
|
675 |
+
|
676 |
+
if num_heads_upsample == -1:
|
677 |
+
num_heads_upsample = num_heads
|
678 |
+
|
679 |
+
if num_heads == -1:
|
680 |
+
assert (
|
681 |
+
num_head_channels != -1
|
682 |
+
), "Either num_heads or num_head_channels has to be set"
|
683 |
+
|
684 |
+
if num_head_channels == -1:
|
685 |
+
assert (
|
686 |
+
num_heads != -1
|
687 |
+
), "Either num_heads or num_head_channels has to be set"
|
688 |
+
|
689 |
+
self.image_size = image_size
|
690 |
+
self.in_channels = in_channels
|
691 |
+
self.model_channels = model_channels
|
692 |
+
self.out_channels = out_channels
|
693 |
+
if isinstance(num_res_blocks, int):
|
694 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
695 |
+
else:
|
696 |
+
if len(num_res_blocks) != len(channel_mult):
|
697 |
+
raise ValueError(
|
698 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
699 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
700 |
+
)
|
701 |
+
self.num_res_blocks = num_res_blocks
|
702 |
+
|
703 |
+
if num_attention_blocks is not None:
|
704 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
705 |
+
assert all(
|
706 |
+
map(
|
707 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
708 |
+
range(len(num_attention_blocks)),
|
709 |
+
)
|
710 |
+
)
|
711 |
+
print(
|
712 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
713 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
714 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
715 |
+
f"attention will still not be set."
|
716 |
+
)
|
717 |
+
|
718 |
+
self.attention_resolutions = attention_resolutions
|
719 |
+
self.dropout = dropout
|
720 |
+
self.channel_mult = channel_mult
|
721 |
+
self.conv_resample = conv_resample
|
722 |
+
self.num_classes = num_classes
|
723 |
+
self.num_heads = num_heads
|
724 |
+
self.num_head_channels = num_head_channels
|
725 |
+
self.num_heads_upsample = num_heads_upsample
|
726 |
+
self.predict_codebook_ids = n_embed is not None
|
727 |
+
|
728 |
+
self.ip_dim = ip_dim
|
729 |
+
self.ip_weight = ip_weight
|
730 |
+
|
731 |
+
if self.ip_dim > 0:
|
732 |
+
self.image_embed = Resampler(
|
733 |
+
dim=context_dim,
|
734 |
+
depth=4,
|
735 |
+
dim_head=64,
|
736 |
+
heads=12,
|
737 |
+
num_queries=ip_dim, # num token
|
738 |
+
embedding_dim=1280,
|
739 |
+
output_dim=context_dim,
|
740 |
+
ff_mult=4,
|
741 |
+
)
|
742 |
+
|
743 |
+
time_embed_dim = model_channels * 4
|
744 |
+
self.time_embed = nn.Sequential(
|
745 |
+
nn.Linear(model_channels, time_embed_dim),
|
746 |
+
nn.SiLU(),
|
747 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
748 |
+
)
|
749 |
+
|
750 |
+
if camera_dim is not None:
|
751 |
+
time_embed_dim = model_channels * 4
|
752 |
+
self.camera_embed = nn.Sequential(
|
753 |
+
nn.Linear(camera_dim, time_embed_dim),
|
754 |
+
nn.SiLU(),
|
755 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
756 |
+
)
|
757 |
+
|
758 |
+
if self.num_classes is not None:
|
759 |
+
if isinstance(self.num_classes, int):
|
760 |
+
self.label_emb = nn.Embedding(self.num_classes, time_embed_dim)
|
761 |
+
elif self.num_classes == "continuous":
|
762 |
+
# print("setting up linear c_adm embedding layer")
|
763 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
764 |
+
elif self.num_classes == "sequential":
|
765 |
+
assert adm_in_channels is not None
|
766 |
+
self.label_emb = nn.Sequential(
|
767 |
+
nn.Sequential(
|
768 |
+
nn.Linear(adm_in_channels, time_embed_dim),
|
769 |
+
nn.SiLU(),
|
770 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
771 |
+
)
|
772 |
+
)
|
773 |
+
else:
|
774 |
+
raise ValueError()
|
775 |
+
|
776 |
+
self.input_blocks = nn.ModuleList(
|
777 |
+
[
|
778 |
+
CondSequential(
|
779 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
780 |
+
)
|
781 |
+
]
|
782 |
+
)
|
783 |
+
self._feature_size = model_channels
|
784 |
+
input_block_chans = [model_channels]
|
785 |
+
ch = model_channels
|
786 |
+
ds = 1
|
787 |
+
for level, mult in enumerate(channel_mult):
|
788 |
+
for nr in range(self.num_res_blocks[level]):
|
789 |
+
layers = [
|
790 |
+
ResBlock(
|
791 |
+
ch,
|
792 |
+
time_embed_dim,
|
793 |
+
dropout,
|
794 |
+
out_channels=mult * model_channels,
|
795 |
+
dims=dims,
|
796 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
797 |
+
)
|
798 |
+
]
|
799 |
+
ch = mult * model_channels
|
800 |
+
if ds in attention_resolutions:
|
801 |
+
if num_head_channels == -1:
|
802 |
+
dim_head = ch // num_heads
|
803 |
+
else:
|
804 |
+
num_heads = ch // num_head_channels
|
805 |
+
dim_head = num_head_channels
|
806 |
+
|
807 |
+
if num_attention_blocks is None or nr < num_attention_blocks[level]:
|
808 |
+
layers.append(
|
809 |
+
SpatialTransformer3D(
|
810 |
+
ch,
|
811 |
+
num_heads,
|
812 |
+
dim_head,
|
813 |
+
context_dim=context_dim,
|
814 |
+
depth=transformer_depth,
|
815 |
+
ip_dim=self.ip_dim,
|
816 |
+
ip_weight=self.ip_weight,
|
817 |
+
)
|
818 |
+
)
|
819 |
+
self.input_blocks.append(CondSequential(*layers))
|
820 |
+
self._feature_size += ch
|
821 |
+
input_block_chans.append(ch)
|
822 |
+
if level != len(channel_mult) - 1:
|
823 |
+
out_ch = ch
|
824 |
+
self.input_blocks.append(
|
825 |
+
CondSequential(
|
826 |
+
ResBlock(
|
827 |
+
ch,
|
828 |
+
time_embed_dim,
|
829 |
+
dropout,
|
830 |
+
out_channels=out_ch,
|
831 |
+
dims=dims,
|
832 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
833 |
+
down=True,
|
834 |
+
)
|
835 |
+
if resblock_updown
|
836 |
+
else Downsample(
|
837 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
838 |
+
)
|
839 |
+
)
|
840 |
+
)
|
841 |
+
ch = out_ch
|
842 |
+
input_block_chans.append(ch)
|
843 |
+
ds *= 2
|
844 |
+
self._feature_size += ch
|
845 |
+
|
846 |
+
if num_head_channels == -1:
|
847 |
+
dim_head = ch // num_heads
|
848 |
+
else:
|
849 |
+
num_heads = ch // num_head_channels
|
850 |
+
dim_head = num_head_channels
|
851 |
+
|
852 |
+
self.middle_block = CondSequential(
|
853 |
+
ResBlock(
|
854 |
+
ch,
|
855 |
+
time_embed_dim,
|
856 |
+
dropout,
|
857 |
+
dims=dims,
|
858 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
859 |
+
),
|
860 |
+
SpatialTransformer3D(
|
861 |
+
ch,
|
862 |
+
num_heads,
|
863 |
+
dim_head,
|
864 |
+
context_dim=context_dim,
|
865 |
+
depth=transformer_depth,
|
866 |
+
ip_dim=self.ip_dim,
|
867 |
+
ip_weight=self.ip_weight,
|
868 |
+
),
|
869 |
+
ResBlock(
|
870 |
+
ch,
|
871 |
+
time_embed_dim,
|
872 |
+
dropout,
|
873 |
+
dims=dims,
|
874 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
875 |
+
),
|
876 |
+
)
|
877 |
+
self._feature_size += ch
|
878 |
+
|
879 |
+
self.output_blocks = nn.ModuleList([])
|
880 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
881 |
+
for i in range(self.num_res_blocks[level] + 1):
|
882 |
+
ich = input_block_chans.pop()
|
883 |
+
layers = [
|
884 |
+
ResBlock(
|
885 |
+
ch + ich,
|
886 |
+
time_embed_dim,
|
887 |
+
dropout,
|
888 |
+
out_channels=model_channels * mult,
|
889 |
+
dims=dims,
|
890 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
891 |
+
)
|
892 |
+
]
|
893 |
+
ch = model_channels * mult
|
894 |
+
if ds in attention_resolutions:
|
895 |
+
if num_head_channels == -1:
|
896 |
+
dim_head = ch // num_heads
|
897 |
+
else:
|
898 |
+
num_heads = ch // num_head_channels
|
899 |
+
dim_head = num_head_channels
|
900 |
+
|
901 |
+
if num_attention_blocks is None or i < num_attention_blocks[level]:
|
902 |
+
layers.append(
|
903 |
+
SpatialTransformer3D(
|
904 |
+
ch,
|
905 |
+
num_heads,
|
906 |
+
dim_head,
|
907 |
+
context_dim=context_dim,
|
908 |
+
depth=transformer_depth,
|
909 |
+
ip_dim=self.ip_dim,
|
910 |
+
ip_weight=self.ip_weight,
|
911 |
+
)
|
912 |
+
)
|
913 |
+
if level and i == self.num_res_blocks[level]:
|
914 |
+
out_ch = ch
|
915 |
+
layers.append(
|
916 |
+
ResBlock(
|
917 |
+
ch,
|
918 |
+
time_embed_dim,
|
919 |
+
dropout,
|
920 |
+
out_channels=out_ch,
|
921 |
+
dims=dims,
|
922 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
923 |
+
up=True,
|
924 |
+
)
|
925 |
+
if resblock_updown
|
926 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
927 |
+
)
|
928 |
+
ds //= 2
|
929 |
+
self.output_blocks.append(CondSequential(*layers))
|
930 |
+
self._feature_size += ch
|
931 |
+
|
932 |
+
self.out = nn.Sequential(
|
933 |
+
nn.GroupNorm(32, ch),
|
934 |
+
nn.SiLU(),
|
935 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
936 |
+
)
|
937 |
+
if self.predict_codebook_ids:
|
938 |
+
self.id_predictor = nn.Sequential(
|
939 |
+
nn.GroupNorm(32, ch),
|
940 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
941 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
942 |
+
)
|
943 |
+
|
944 |
+
def forward(
|
945 |
+
self,
|
946 |
+
x,
|
947 |
+
timesteps=None,
|
948 |
+
context=None,
|
949 |
+
y=None,
|
950 |
+
camera=None,
|
951 |
+
num_frames=1,
|
952 |
+
ip=None,
|
953 |
+
ip_img=None,
|
954 |
+
**kwargs,
|
955 |
+
):
|
956 |
+
"""
|
957 |
+
Apply the model to an input batch.
|
958 |
+
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
|
959 |
+
:param timesteps: a 1-D batch of timesteps.
|
960 |
+
:param context: conditioning plugged in via crossattn
|
961 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
962 |
+
:param num_frames: a integer indicating number of frames for tensor reshaping.
|
963 |
+
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
|
964 |
+
"""
|
965 |
+
assert (
|
966 |
+
x.shape[0] % num_frames == 0
|
967 |
+
), "input batch size must be dividable by num_frames!"
|
968 |
+
assert (y is not None) == (
|
969 |
+
self.num_classes is not None
|
970 |
+
), "must specify y if and only if the model is class-conditional"
|
971 |
+
|
972 |
+
hs = []
|
973 |
+
|
974 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
975 |
+
|
976 |
+
emb = self.time_embed(t_emb)
|
977 |
+
|
978 |
+
if self.num_classes is not None:
|
979 |
+
assert y is not None
|
980 |
+
assert y.shape[0] == x.shape[0]
|
981 |
+
emb = emb + self.label_emb(y)
|
982 |
+
|
983 |
+
# Add camera embeddings
|
984 |
+
if camera is not None:
|
985 |
+
emb = emb + self.camera_embed(camera)
|
986 |
+
|
987 |
+
# imagedream variant
|
988 |
+
if self.ip_dim > 0:
|
989 |
+
x[(num_frames - 1) :: num_frames, :, :, :] = ip_img # place at [4, 9]
|
990 |
+
ip_emb = self.image_embed(ip)
|
991 |
+
context = torch.cat((context, ip_emb), 1)
|
992 |
+
|
993 |
+
h = x
|
994 |
+
for module in self.input_blocks:
|
995 |
+
h = module(h, emb, context, num_frames=num_frames)
|
996 |
+
hs.append(h)
|
997 |
+
h = self.middle_block(h, emb, context, num_frames=num_frames)
|
998 |
+
for module in self.output_blocks:
|
999 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
1000 |
+
h = module(h, emb, context, num_frames=num_frames)
|
1001 |
+
h = h.type(x.dtype)
|
1002 |
+
if self.predict_codebook_ids:
|
1003 |
+
return self.id_predictor(h)
|
1004 |
+
else:
|
1005 |
+
return self.out(h)
|
apps/third_party/LGM/pipeline_mvdream.py
ADDED
@@ -0,0 +1,557 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import inspect
|
4 |
+
import numpy as np
|
5 |
+
from typing import Callable, List, Optional, Union
|
6 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor
|
7 |
+
from diffusers import AutoencoderKL, DiffusionPipeline
|
8 |
+
from diffusers.utils import (
|
9 |
+
deprecate,
|
10 |
+
is_accelerate_available,
|
11 |
+
is_accelerate_version,
|
12 |
+
logging,
|
13 |
+
)
|
14 |
+
from diffusers.configuration_utils import FrozenDict
|
15 |
+
from diffusers.schedulers import DDIMScheduler
|
16 |
+
from diffusers.utils.torch_utils import randn_tensor
|
17 |
+
|
18 |
+
from apps.third_party.LGM.mv_unet import MultiViewUNetModel, get_camera
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
21 |
+
|
22 |
+
|
23 |
+
class MVDreamPipeline(DiffusionPipeline):
|
24 |
+
|
25 |
+
_optional_components = ["feature_extractor", "image_encoder"]
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
vae: AutoencoderKL,
|
30 |
+
unet: MultiViewUNetModel,
|
31 |
+
tokenizer: CLIPTokenizer,
|
32 |
+
text_encoder: CLIPTextModel,
|
33 |
+
scheduler: DDIMScheduler,
|
34 |
+
# imagedream variant
|
35 |
+
feature_extractor: CLIPImageProcessor,
|
36 |
+
image_encoder: CLIPVisionModel,
|
37 |
+
requires_safety_checker: bool = False,
|
38 |
+
):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: # type: ignore
|
42 |
+
deprecation_message = (
|
43 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
44 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " # type: ignore
|
45 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
46 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
47 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
48 |
+
" file"
|
49 |
+
)
|
50 |
+
deprecate(
|
51 |
+
"steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False
|
52 |
+
)
|
53 |
+
new_config = dict(scheduler.config)
|
54 |
+
new_config["steps_offset"] = 1
|
55 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
56 |
+
|
57 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: # type: ignore
|
58 |
+
deprecation_message = (
|
59 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
60 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
61 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
62 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
63 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
64 |
+
)
|
65 |
+
deprecate(
|
66 |
+
"clip_sample not set", "1.0.0", deprecation_message, standard_warn=False
|
67 |
+
)
|
68 |
+
new_config = dict(scheduler.config)
|
69 |
+
new_config["clip_sample"] = False
|
70 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
71 |
+
|
72 |
+
self.register_modules(
|
73 |
+
vae=vae,
|
74 |
+
unet=unet,
|
75 |
+
scheduler=scheduler,
|
76 |
+
tokenizer=tokenizer,
|
77 |
+
text_encoder=text_encoder,
|
78 |
+
feature_extractor=feature_extractor,
|
79 |
+
image_encoder=image_encoder,
|
80 |
+
)
|
81 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
82 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
83 |
+
|
84 |
+
def enable_vae_slicing(self):
|
85 |
+
r"""
|
86 |
+
Enable sliced VAE decoding.
|
87 |
+
|
88 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
89 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
90 |
+
"""
|
91 |
+
self.vae.enable_slicing()
|
92 |
+
|
93 |
+
def disable_vae_slicing(self):
|
94 |
+
r"""
|
95 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
96 |
+
computing decoding in one step.
|
97 |
+
"""
|
98 |
+
self.vae.disable_slicing()
|
99 |
+
|
100 |
+
def enable_vae_tiling(self):
|
101 |
+
r"""
|
102 |
+
Enable tiled VAE decoding.
|
103 |
+
|
104 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
105 |
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
106 |
+
"""
|
107 |
+
self.vae.enable_tiling()
|
108 |
+
|
109 |
+
def disable_vae_tiling(self):
|
110 |
+
r"""
|
111 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
112 |
+
computing decoding in one step.
|
113 |
+
"""
|
114 |
+
self.vae.disable_tiling()
|
115 |
+
|
116 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
117 |
+
r"""
|
118 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
119 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
120 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
121 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
122 |
+
`enable_model_cpu_offload`, but performance is lower.
|
123 |
+
"""
|
124 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
125 |
+
from accelerate import cpu_offload
|
126 |
+
else:
|
127 |
+
raise ImportError(
|
128 |
+
"`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher"
|
129 |
+
)
|
130 |
+
|
131 |
+
device = torch.device(f"cuda:{gpu_id}")
|
132 |
+
|
133 |
+
if self.device.type != "cpu":
|
134 |
+
self.to("cpu", silence_dtype_warnings=True)
|
135 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
136 |
+
|
137 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
138 |
+
cpu_offload(cpu_offloaded_model, device)
|
139 |
+
|
140 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
141 |
+
r"""
|
142 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
143 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
144 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
145 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
146 |
+
"""
|
147 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
148 |
+
from accelerate import cpu_offload_with_hook
|
149 |
+
else:
|
150 |
+
raise ImportError(
|
151 |
+
"`enable_model_offload` requires `accelerate v0.17.0` or higher."
|
152 |
+
)
|
153 |
+
|
154 |
+
device = torch.device(f"cuda:{gpu_id}")
|
155 |
+
|
156 |
+
if self.device.type != "cpu":
|
157 |
+
self.to("cpu", silence_dtype_warnings=True)
|
158 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
159 |
+
|
160 |
+
hook = None
|
161 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
162 |
+
_, hook = cpu_offload_with_hook(
|
163 |
+
cpu_offloaded_model, device, prev_module_hook=hook
|
164 |
+
)
|
165 |
+
|
166 |
+
# We'll offload the last model manually.
|
167 |
+
self.final_offload_hook = hook
|
168 |
+
|
169 |
+
@property
|
170 |
+
def _execution_device(self):
|
171 |
+
r"""
|
172 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
173 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
174 |
+
hooks.
|
175 |
+
"""
|
176 |
+
if not hasattr(self.unet, "_hf_hook"):
|
177 |
+
return self.device
|
178 |
+
for module in self.unet.modules():
|
179 |
+
if (
|
180 |
+
hasattr(module, "_hf_hook")
|
181 |
+
and hasattr(module._hf_hook, "execution_device")
|
182 |
+
and module._hf_hook.execution_device is not None
|
183 |
+
):
|
184 |
+
return torch.device(module._hf_hook.execution_device)
|
185 |
+
return self.device
|
186 |
+
|
187 |
+
def _encode_prompt(
|
188 |
+
self,
|
189 |
+
prompt,
|
190 |
+
device,
|
191 |
+
num_images_per_prompt,
|
192 |
+
do_classifier_free_guidance: bool,
|
193 |
+
negative_prompt=None,
|
194 |
+
):
|
195 |
+
r"""
|
196 |
+
Encodes the prompt into text encoder hidden states.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
prompt (`str` or `List[str]`, *optional*):
|
200 |
+
prompt to be encoded
|
201 |
+
device: (`torch.device`):
|
202 |
+
torch device
|
203 |
+
num_images_per_prompt (`int`):
|
204 |
+
number of images that should be generated per prompt
|
205 |
+
do_classifier_free_guidance (`bool`):
|
206 |
+
whether to use classifier free guidance or not
|
207 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
208 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
209 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
210 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
211 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
212 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
213 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
214 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
215 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
216 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
217 |
+
argument.
|
218 |
+
"""
|
219 |
+
if prompt is not None and isinstance(prompt, str):
|
220 |
+
batch_size = 1
|
221 |
+
elif prompt is not None and isinstance(prompt, list):
|
222 |
+
batch_size = len(prompt)
|
223 |
+
else:
|
224 |
+
raise ValueError(
|
225 |
+
f"`prompt` should be either a string or a list of strings, but got {type(prompt)}."
|
226 |
+
)
|
227 |
+
|
228 |
+
text_inputs = self.tokenizer(
|
229 |
+
prompt,
|
230 |
+
padding="max_length",
|
231 |
+
max_length=self.tokenizer.model_max_length,
|
232 |
+
truncation=True,
|
233 |
+
return_tensors="pt",
|
234 |
+
)
|
235 |
+
text_input_ids = text_inputs.input_ids
|
236 |
+
untruncated_ids = self.tokenizer(
|
237 |
+
prompt, padding="longest", return_tensors="pt"
|
238 |
+
).input_ids
|
239 |
+
|
240 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
241 |
+
text_input_ids, untruncated_ids
|
242 |
+
):
|
243 |
+
removed_text = self.tokenizer.batch_decode(
|
244 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
245 |
+
)
|
246 |
+
logger.warning(
|
247 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
248 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
249 |
+
)
|
250 |
+
|
251 |
+
if (
|
252 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
253 |
+
and self.text_encoder.config.use_attention_mask
|
254 |
+
):
|
255 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
256 |
+
else:
|
257 |
+
attention_mask = None
|
258 |
+
|
259 |
+
prompt_embeds = self.text_encoder(
|
260 |
+
text_input_ids.to(device),
|
261 |
+
attention_mask=attention_mask,
|
262 |
+
)
|
263 |
+
prompt_embeds = prompt_embeds[0]
|
264 |
+
|
265 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
266 |
+
|
267 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
268 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
269 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
270 |
+
prompt_embeds = prompt_embeds.view(
|
271 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
272 |
+
)
|
273 |
+
|
274 |
+
# get unconditional embeddings for classifier free guidance
|
275 |
+
if do_classifier_free_guidance:
|
276 |
+
uncond_tokens: List[str]
|
277 |
+
if negative_prompt is None:
|
278 |
+
uncond_tokens = [""] * batch_size
|
279 |
+
elif type(prompt) is not type(negative_prompt):
|
280 |
+
raise TypeError(
|
281 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
282 |
+
f" {type(prompt)}."
|
283 |
+
)
|
284 |
+
elif isinstance(negative_prompt, str):
|
285 |
+
uncond_tokens = [negative_prompt]
|
286 |
+
elif batch_size != len(negative_prompt):
|
287 |
+
raise ValueError(
|
288 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
289 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
290 |
+
" the batch size of `prompt`."
|
291 |
+
)
|
292 |
+
else:
|
293 |
+
uncond_tokens = negative_prompt
|
294 |
+
|
295 |
+
max_length = prompt_embeds.shape[1]
|
296 |
+
uncond_input = self.tokenizer(
|
297 |
+
uncond_tokens,
|
298 |
+
padding="max_length",
|
299 |
+
max_length=max_length,
|
300 |
+
truncation=True,
|
301 |
+
return_tensors="pt",
|
302 |
+
)
|
303 |
+
|
304 |
+
if (
|
305 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
306 |
+
and self.text_encoder.config.use_attention_mask
|
307 |
+
):
|
308 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
309 |
+
else:
|
310 |
+
attention_mask = None
|
311 |
+
|
312 |
+
negative_prompt_embeds = self.text_encoder(
|
313 |
+
uncond_input.input_ids.to(device),
|
314 |
+
attention_mask=attention_mask,
|
315 |
+
)
|
316 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
317 |
+
|
318 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
319 |
+
seq_len = negative_prompt_embeds.shape[1]
|
320 |
+
|
321 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
322 |
+
dtype=self.text_encoder.dtype, device=device
|
323 |
+
)
|
324 |
+
|
325 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
326 |
+
1, num_images_per_prompt, 1
|
327 |
+
)
|
328 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
329 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
330 |
+
)
|
331 |
+
|
332 |
+
# For classifier free guidance, we need to do two forward passes.
|
333 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
334 |
+
# to avoid doing two forward passes
|
335 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
336 |
+
|
337 |
+
return prompt_embeds
|
338 |
+
|
339 |
+
def decode_latents(self, latents):
|
340 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
341 |
+
image = self.vae.decode(latents).sample
|
342 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
343 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
344 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
345 |
+
return image
|
346 |
+
|
347 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
348 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
349 |
+
# eta (Ξ·) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
350 |
+
# eta corresponds to Ξ· in DDIM paper: https://arxiv.org/abs/2010.02502
|
351 |
+
# and should be between [0, 1]
|
352 |
+
|
353 |
+
accepts_eta = "eta" in set(
|
354 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
355 |
+
)
|
356 |
+
extra_step_kwargs = {}
|
357 |
+
if accepts_eta:
|
358 |
+
extra_step_kwargs["eta"] = eta
|
359 |
+
|
360 |
+
# check if the scheduler accepts generator
|
361 |
+
accepts_generator = "generator" in set(
|
362 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
363 |
+
)
|
364 |
+
if accepts_generator:
|
365 |
+
extra_step_kwargs["generator"] = generator
|
366 |
+
return extra_step_kwargs
|
367 |
+
|
368 |
+
def prepare_latents(
|
369 |
+
self,
|
370 |
+
batch_size,
|
371 |
+
num_channels_latents,
|
372 |
+
height,
|
373 |
+
width,
|
374 |
+
dtype,
|
375 |
+
device,
|
376 |
+
generator,
|
377 |
+
latents=None,
|
378 |
+
):
|
379 |
+
shape = (
|
380 |
+
batch_size,
|
381 |
+
num_channels_latents,
|
382 |
+
height // self.vae_scale_factor,
|
383 |
+
width // self.vae_scale_factor,
|
384 |
+
)
|
385 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
386 |
+
raise ValueError(
|
387 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
388 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
389 |
+
)
|
390 |
+
|
391 |
+
if latents is None:
|
392 |
+
latents = randn_tensor(
|
393 |
+
shape, generator=generator, device=device, dtype=dtype
|
394 |
+
)
|
395 |
+
else:
|
396 |
+
latents = latents.to(device)
|
397 |
+
|
398 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
399 |
+
latents = latents * self.scheduler.init_noise_sigma
|
400 |
+
return latents
|
401 |
+
|
402 |
+
def encode_image(self, image, device, num_images_per_prompt):
|
403 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
404 |
+
|
405 |
+
if image.dtype == np.float32:
|
406 |
+
image = (image * 255).astype(np.uint8)
|
407 |
+
|
408 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
409 |
+
image = image.to(device=device, dtype=dtype)
|
410 |
+
|
411 |
+
image_embeds = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
412 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
413 |
+
|
414 |
+
return torch.zeros_like(image_embeds), image_embeds
|
415 |
+
|
416 |
+
def encode_image_latents(self, image, device, num_images_per_prompt):
|
417 |
+
|
418 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
419 |
+
|
420 |
+
image = torch.from_numpy(image).unsqueeze(0).permute(0, 3, 1, 2).to(device=device) # [1, 3, H, W]
|
421 |
+
image = 2 * image - 1
|
422 |
+
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
|
423 |
+
image = image.to(dtype=dtype)
|
424 |
+
|
425 |
+
posterior = self.vae.encode(image).latent_dist
|
426 |
+
latents = posterior.sample() * self.vae.config.scaling_factor # [B, C, H, W]
|
427 |
+
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
|
428 |
+
|
429 |
+
return torch.zeros_like(latents), latents
|
430 |
+
|
431 |
+
@torch.no_grad()
|
432 |
+
def __call__(
|
433 |
+
self,
|
434 |
+
prompt: str = "",
|
435 |
+
image: Optional[np.ndarray] = None,
|
436 |
+
height: int = 256,
|
437 |
+
width: int = 256,
|
438 |
+
elevation: float = 0,
|
439 |
+
num_inference_steps: int = 50,
|
440 |
+
guidance_scale: float = 7.0,
|
441 |
+
negative_prompt: str = "",
|
442 |
+
num_images_per_prompt: int = 1,
|
443 |
+
eta: float = 0.0,
|
444 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
445 |
+
output_type: Optional[str] = "numpy", # pil, numpy, latents
|
446 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
447 |
+
callback_steps: int = 1,
|
448 |
+
num_frames: int = 4,
|
449 |
+
device=torch.device("cuda:0"),
|
450 |
+
):
|
451 |
+
self.unet = self.unet.to(device=device)
|
452 |
+
self.vae = self.vae.to(device=device)
|
453 |
+
self.text_encoder = self.text_encoder.to(device=device)
|
454 |
+
|
455 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
456 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
457 |
+
# corresponds to doing no classifier free guidance.
|
458 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
459 |
+
|
460 |
+
# Prepare timesteps
|
461 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
462 |
+
timesteps = self.scheduler.timesteps
|
463 |
+
|
464 |
+
# imagedream variant
|
465 |
+
if image is not None:
|
466 |
+
assert isinstance(image, np.ndarray) and image.dtype == np.float32
|
467 |
+
self.image_encoder = self.image_encoder.to(device=device)
|
468 |
+
image_embeds_neg, image_embeds_pos = self.encode_image(image, device, num_images_per_prompt)
|
469 |
+
image_latents_neg, image_latents_pos = self.encode_image_latents(image, device, num_images_per_prompt)
|
470 |
+
|
471 |
+
_prompt_embeds = self._encode_prompt(
|
472 |
+
prompt=prompt,
|
473 |
+
device=device,
|
474 |
+
num_images_per_prompt=num_images_per_prompt,
|
475 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
476 |
+
negative_prompt=negative_prompt,
|
477 |
+
) # type: ignore
|
478 |
+
prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2)
|
479 |
+
|
480 |
+
# Prepare latent variables
|
481 |
+
actual_num_frames = num_frames if image is None else num_frames + 1
|
482 |
+
latents: torch.Tensor = self.prepare_latents(
|
483 |
+
actual_num_frames * num_images_per_prompt,
|
484 |
+
4,
|
485 |
+
height,
|
486 |
+
width,
|
487 |
+
prompt_embeds_pos.dtype,
|
488 |
+
device,
|
489 |
+
generator,
|
490 |
+
None,
|
491 |
+
)
|
492 |
+
|
493 |
+
# Get camera
|
494 |
+
camera = get_camera(num_frames, elevation=elevation, extra_view=(image is not None)).to(dtype=latents.dtype, device=device)
|
495 |
+
camera = camera.repeat_interleave(num_images_per_prompt, dim=0)
|
496 |
+
|
497 |
+
# Prepare extra step kwargs.
|
498 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
499 |
+
|
500 |
+
# Denoising loop
|
501 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
502 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
503 |
+
for i, t in enumerate(timesteps):
|
504 |
+
# expand the latents if we are doing classifier free guidance
|
505 |
+
multiplier = 2 if do_classifier_free_guidance else 1
|
506 |
+
latent_model_input = torch.cat([latents] * multiplier)
|
507 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
508 |
+
|
509 |
+
unet_inputs = {
|
510 |
+
'x': latent_model_input,
|
511 |
+
'timesteps': torch.tensor([t] * actual_num_frames * multiplier, dtype=latent_model_input.dtype, device=device),
|
512 |
+
'context': torch.cat([prompt_embeds_neg] * actual_num_frames + [prompt_embeds_pos] * actual_num_frames),
|
513 |
+
'num_frames': actual_num_frames,
|
514 |
+
'camera': torch.cat([camera] * multiplier),
|
515 |
+
}
|
516 |
+
|
517 |
+
if image is not None:
|
518 |
+
unet_inputs['ip'] = torch.cat([image_embeds_neg] * actual_num_frames + [image_embeds_pos] * actual_num_frames)
|
519 |
+
unet_inputs['ip_img'] = torch.cat([image_latents_neg] + [image_latents_pos]) # no repeat
|
520 |
+
|
521 |
+
# predict the noise residual
|
522 |
+
noise_pred = self.unet.forward(**unet_inputs)
|
523 |
+
|
524 |
+
# perform guidance
|
525 |
+
if do_classifier_free_guidance:
|
526 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
527 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
528 |
+
noise_pred_text - noise_pred_uncond
|
529 |
+
)
|
530 |
+
|
531 |
+
# compute the previous noisy sample x_t -> x_t-1
|
532 |
+
latents: torch.Tensor = self.scheduler.step(
|
533 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
534 |
+
)[0]
|
535 |
+
|
536 |
+
# call the callback, if provided
|
537 |
+
if i == len(timesteps) - 1 or (
|
538 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
539 |
+
):
|
540 |
+
progress_bar.update()
|
541 |
+
if callback is not None and i % callback_steps == 0:
|
542 |
+
callback(i, t, latents) # type: ignore
|
543 |
+
|
544 |
+
# Post-processing
|
545 |
+
if output_type == "latent":
|
546 |
+
image = latents
|
547 |
+
elif output_type == "pil":
|
548 |
+
image = self.decode_latents(latents)
|
549 |
+
image = self.numpy_to_pil(image)
|
550 |
+
else: # numpy
|
551 |
+
image = self.decode_latents(latents)
|
552 |
+
|
553 |
+
# Offload last model to CPU
|
554 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
555 |
+
self.final_offload_hook.offload()
|
556 |
+
|
557 |
+
return image
|
apps/third_party/LGM/requirements.lock.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
omegaconf == 2.3.0
|
2 |
+
diffusers == 0.23.1
|
3 |
+
safetensors == 0.4.1
|
4 |
+
huggingface_hub == 0.19.4
|
5 |
+
transformers == 4.35.2
|
6 |
+
accelerate == 0.25.0.dev0
|
7 |
+
kiui == 0.2.0
|
apps/third_party/LGM/requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
omegaconf
|
2 |
+
diffusers
|
3 |
+
safetensors
|
4 |
+
huggingface_hub
|
5 |
+
transformers
|
6 |
+
accelerate
|
7 |
+
kiui
|
8 |
+
einops
|
9 |
+
rich
|
apps/third_party/LGM/run_imagedream.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import kiui
|
3 |
+
import numpy as np
|
4 |
+
import argparse
|
5 |
+
from pipeline_mvdream import MVDreamPipeline
|
6 |
+
import ipdb
|
7 |
+
pipe = MVDreamPipeline.from_pretrained(
|
8 |
+
# "./weights_imagedream", # local weights
|
9 |
+
"/mnt/cfs/home/liweiyu/codes/3DNativeGeneration/ckpts/pretrained_weights/huggingface/hub/models--ashawkey--imagedream-ipmv-diffusers/snapshots/73a034178e748421506492e91790cc62d6aefef5", # remote weights
|
10 |
+
torch_dtype=torch.float16,
|
11 |
+
trust_remote_code=True,
|
12 |
+
)
|
13 |
+
pipe = pipe.to("cuda")
|
14 |
+
|
15 |
+
|
16 |
+
parser = argparse.ArgumentParser(description="ImageDream")
|
17 |
+
parser.add_argument("image", type=str, default='data/anya_rgba.png')
|
18 |
+
parser.add_argument("--prompt", type=str, default="")
|
19 |
+
args = parser.parse_args()
|
20 |
+
|
21 |
+
for i in range(5):
|
22 |
+
input_image = kiui.read_image(args.image, mode='float')
|
23 |
+
image = pipe(args.prompt, input_image, guidance_scale=5, num_inference_steps=30, elevation=0)
|
24 |
+
ipdb.set_trace()
|
25 |
+
# print(image)
|
26 |
+
grid = np.concatenate(
|
27 |
+
[
|
28 |
+
np.concatenate([image[0], image[2]], axis=0),
|
29 |
+
np.concatenate([image[1], image[3]], axis=0),
|
30 |
+
],
|
31 |
+
axis=1,
|
32 |
+
)
|
33 |
+
# kiui.vis.plot_image(grid)
|
34 |
+
kiui.write_image(f'test_imagedream_{i}.jpg', grid)
|
apps/third_party/LGM/run_mvdream.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import kiui
|
3 |
+
import numpy as np
|
4 |
+
import argparse
|
5 |
+
from pipeline_mvdream import MVDreamPipeline
|
6 |
+
|
7 |
+
import ipdb
|
8 |
+
pipe = MVDreamPipeline.from_pretrained(
|
9 |
+
# "./weights_mvdream", # local weights
|
10 |
+
'/mnt/cfs/home/liweiyu/codes/3DNativeGeneration/ckpts/pretrained_weights/huggingface/hub/models--ashawkey--mvdream-sd2.1-diffusers/snapshots/503bb19fc2b2bc542c2afdb7d73ac87a7cbc2253', # remote weights
|
11 |
+
torch_dtype=torch.float16,
|
12 |
+
# trust_remote_code=True,
|
13 |
+
)
|
14 |
+
|
15 |
+
pipe = pipe.to("cuda")
|
16 |
+
|
17 |
+
|
18 |
+
parser = argparse.ArgumentParser(description="MVDream")
|
19 |
+
parser.add_argument("prompt", type=str, default="a cute owl 3d model")
|
20 |
+
args = parser.parse_args()
|
21 |
+
|
22 |
+
for i in range(5):
|
23 |
+
image = pipe(args.prompt, guidance_scale=5, num_inference_steps=30, elevation=0)
|
24 |
+
ipdb.set_trace()
|
25 |
+
grid = np.concatenate(
|
26 |
+
[
|
27 |
+
np.concatenate([image[0], image[2]], axis=0),
|
28 |
+
np.concatenate([image[1], image[3]], axis=0),
|
29 |
+
],
|
30 |
+
axis=1,
|
31 |
+
)
|
32 |
+
# kiui.vis.plot_image(grid)
|
33 |
+
kiui.write_image(f'test_mvdream_{i}.jpg', grid)
|