Upload gradio_app.py
Browse files- gradio_app.py +77 -47
gradio_app.py
CHANGED
|
@@ -12,9 +12,6 @@ from huggingface_hub import hf_hub_download
|
|
| 12 |
|
| 13 |
from collections import OrderedDict
|
| 14 |
import trimesh
|
| 15 |
-
from einops import repeat, rearrange
|
| 16 |
-
import pytorch_lightning as pl
|
| 17 |
-
from typing import Dict, Optional, Tuple, List
|
| 18 |
import gradio as gr
|
| 19 |
from typing import Any
|
| 20 |
|
|
@@ -22,12 +19,8 @@ proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
|
| 22 |
sys.path.append(os.path.join(proj_dir))
|
| 23 |
|
| 24 |
import tempfile
|
| 25 |
-
import craftsman
|
| 26 |
-
from craftsman.systems.base import BaseSystem
|
| 27 |
-
from craftsman.utils.config import ExperimentConfig, load_config
|
| 28 |
|
| 29 |
from apps.utils import *
|
| 30 |
-
from apps.mv_models import GenMVImage
|
| 31 |
|
| 32 |
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner'''
|
| 33 |
_DESCRIPTION = '''
|
|
@@ -64,6 +57,8 @@ CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so
|
|
| 64 |
If you have any questions, feel free to open a discussion or contact us at <b>weiyuli.cn@gmail.com</b>.
|
| 65 |
"""
|
| 66 |
from apps.third_party.CRM.pipelines import TwoStagePipeline
|
|
|
|
|
|
|
| 67 |
|
| 68 |
model = None
|
| 69 |
cached_dir = None
|
|
@@ -74,17 +69,43 @@ stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pi
|
|
| 74 |
stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
|
| 75 |
crm_pipeline = None
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
@spaces.GPU
|
| 78 |
def gen_mvimg(
|
| 79 |
-
mvimg_model,
|
| 80 |
):
|
| 81 |
-
global crm_pipeline
|
| 82 |
if seed == 0:
|
| 83 |
seed = np.random.randint(1, 65535)
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
@spaces.GPU
|
| 90 |
def image2mesh(view_front: np.ndarray,
|
|
@@ -153,22 +174,27 @@ if __name__=="__main__":
|
|
| 153 |
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
|
| 154 |
print(f"using device: {device}")
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
crm_pipeline = TwoStagePipeline(
|
| 157 |
stage1_model_config,
|
| 158 |
stage1_sampler_config,
|
| 159 |
device=device,
|
| 160 |
dtype=torch.float16
|
| 161 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
-
# for multi-view images generation
|
| 164 |
-
background_choice = OrderedDict({
|
| 165 |
-
"Alpha as Mask": "Alpha as Mask",
|
| 166 |
-
"Auto Remove Background": "Auto Remove Background",
|
| 167 |
-
"Original Image": "Original Image",
|
| 168 |
-
})
|
| 169 |
-
mvimg_model_config_list = ["CRM"]
|
| 170 |
-
# mvimg_model_config_list = ["CRM", "ImageDream", "Wonder3D"]
|
| 171 |
-
|
| 172 |
# for 3D latent set diffusion
|
| 173 |
ckpt_path = "./ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt"
|
| 174 |
config_path = "./ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml"
|
|
@@ -196,24 +222,33 @@ if __name__=="__main__":
|
|
| 196 |
|
| 197 |
with gr.Row():
|
| 198 |
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
with gr.Row():
|
| 200 |
-
|
| 201 |
-
label="Image Input",
|
| 202 |
-
image_mode="RGBA",
|
| 203 |
-
sources="upload",
|
| 204 |
-
type="pil",
|
| 205 |
-
)
|
| 206 |
-
with gr.Row():
|
| 207 |
-
text = gr.Textbox(label="Prompt (Optional, only works for mvdream)", visible=False)
|
| 208 |
-
with gr.Row():
|
| 209 |
-
gr.Markdown('''Try a different <b>seed</b> if the result is unsatisfying. Good Luck :)''')
|
| 210 |
with gr.Row():
|
| 211 |
seed = gr.Number(0, label='Seed', show_label=True)
|
|
|
|
| 212 |
more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False)
|
| 213 |
-
|
| 214 |
-
#
|
| 215 |
-
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
with gr.Row():
|
| 218 |
gr.Examples(
|
| 219 |
examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")],
|
|
@@ -243,10 +278,6 @@ if __name__=="__main__":
|
|
| 243 |
run_3d_btn = gr.Button('Only Generate 3D', interactive=True)
|
| 244 |
|
| 245 |
with gr.Accordion('Advanced options (2D)', open=False):
|
| 246 |
-
with gr.Row():
|
| 247 |
-
crop_size = gr.Number(224, label='Crop size')
|
| 248 |
-
mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=mvimg_model_config_list)
|
| 249 |
-
|
| 250 |
with gr.Row():
|
| 251 |
foreground_ratio = gr.Slider(
|
| 252 |
label="Foreground Ratio",
|
|
@@ -259,11 +290,11 @@ if __name__=="__main__":
|
|
| 259 |
with gr.Row():
|
| 260 |
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys()))
|
| 261 |
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"])
|
| 262 |
-
|
| 263 |
-
backgroud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=True)
|
| 264 |
|
| 265 |
with gr.Row():
|
| 266 |
-
mvimg_guidance_scale = gr.Number(value=
|
| 267 |
mvimg_steps = gr.Number(value=30, minimum=20, maximum=100, label="2D Sample Steps")
|
| 268 |
|
| 269 |
with gr.Accordion('Advanced options (3D)', open=False):
|
|
@@ -280,17 +311,16 @@ if __name__=="__main__":
|
|
| 280 |
outputs = [output_model_obj]
|
| 281 |
rmbg = RMBG(device)
|
| 282 |
|
| 283 |
-
# gen_mvimg = GenMVImage(device)
|
| 284 |
model = load_model(ckpt_path, config_path, device)
|
| 285 |
|
| 286 |
run_btn.click(fn=check_input_image, inputs=[image_input]
|
| 287 |
).success(
|
| 288 |
fn=rmbg.run,
|
| 289 |
-
inputs=[rmbg_type, image_input,
|
| 290 |
outputs=[image_input]
|
| 291 |
).success(
|
| 292 |
fn=gen_mvimg,
|
| 293 |
-
inputs=[mvimg_model,
|
| 294 |
outputs=[view_front, view_right, view_back, view_left]
|
| 295 |
).success(
|
| 296 |
fn=image2mesh,
|
|
@@ -298,7 +328,7 @@ if __name__=="__main__":
|
|
| 298 |
outputs=outputs,
|
| 299 |
api_name="generate_img2obj")
|
| 300 |
run_mv_btn.click(fn=gen_mvimg,
|
| 301 |
-
inputs=[mvimg_model,
|
| 302 |
outputs=[view_front, view_right, view_back, view_left]
|
| 303 |
)
|
| 304 |
run_3d_btn.click(fn=image2mesh,
|
|
|
|
| 12 |
|
| 13 |
from collections import OrderedDict
|
| 14 |
import trimesh
|
|
|
|
|
|
|
|
|
|
| 15 |
import gradio as gr
|
| 16 |
from typing import Any
|
| 17 |
|
|
|
|
| 19 |
sys.path.append(os.path.join(proj_dir))
|
| 20 |
|
| 21 |
import tempfile
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
from apps.utils import *
|
|
|
|
| 24 |
|
| 25 |
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner'''
|
| 26 |
_DESCRIPTION = '''
|
|
|
|
| 57 |
If you have any questions, feel free to open a discussion or contact us at <b>weiyuli.cn@gmail.com</b>.
|
| 58 |
"""
|
| 59 |
from apps.third_party.CRM.pipelines import TwoStagePipeline
|
| 60 |
+
from apps.third_party.LGM.pipeline_mvdream import MVDreamPipeline
|
| 61 |
+
|
| 62 |
|
| 63 |
model = None
|
| 64 |
cached_dir = None
|
|
|
|
| 69 |
stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
|
| 70 |
crm_pipeline = None
|
| 71 |
|
| 72 |
+
sys.path.append(f"apps/third_party/LGM")
|
| 73 |
+
imgaedream_pipeline = None
|
| 74 |
+
|
| 75 |
+
generator = None
|
| 76 |
+
|
| 77 |
@spaces.GPU
|
| 78 |
def gen_mvimg(
|
| 79 |
+
mvimg_model, image, seed, guidance_scale, step, text, neg_text, elevation,
|
| 80 |
):
|
|
|
|
| 81 |
if seed == 0:
|
| 82 |
seed = np.random.randint(1, 65535)
|
| 83 |
+
|
| 84 |
+
if mvimg_model == "CRM":
|
| 85 |
+
global crm_pipeline
|
| 86 |
+
crm_pipeline.set_seed(seed)
|
| 87 |
+
mv_imgs = crm_pipeline(
|
| 88 |
+
image,
|
| 89 |
+
scale=guidance_scale,
|
| 90 |
+
step=step
|
| 91 |
+
)["stage1_images"]
|
| 92 |
+
return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
|
| 93 |
+
|
| 94 |
+
elif mvimg_model == "ImageDream":
|
| 95 |
+
global imagedream_pipeline, generator
|
| 96 |
+
image = np.array(image).astype(np.float32) / 255.0
|
| 97 |
+
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
|
| 98 |
+
mv_imgs = imagedream_pipeline(
|
| 99 |
+
text,
|
| 100 |
+
image,
|
| 101 |
+
negative_prompt=neg_text,
|
| 102 |
+
guidance_scale=guidance_scale,
|
| 103 |
+
num_inference_steps=step,
|
| 104 |
+
elevation=elevation,
|
| 105 |
+
generator=generator.manual_seed(seed),
|
| 106 |
+
)
|
| 107 |
+
return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0]
|
| 108 |
+
|
| 109 |
|
| 110 |
@spaces.GPU
|
| 111 |
def image2mesh(view_front: np.ndarray,
|
|
|
|
| 174 |
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
|
| 175 |
print(f"using device: {device}")
|
| 176 |
|
| 177 |
+
# for multi-view images generation
|
| 178 |
+
background_choice = OrderedDict({
|
| 179 |
+
"Alpha as Mask": "Alpha as Mask",
|
| 180 |
+
"Auto Remove Background": "Auto Remove Background",
|
| 181 |
+
"Original Image": "Original Image",
|
| 182 |
+
})
|
| 183 |
+
mvimg_model_config_list = ["CRM", "ImageDream"]
|
| 184 |
crm_pipeline = TwoStagePipeline(
|
| 185 |
stage1_model_config,
|
| 186 |
stage1_sampler_config,
|
| 187 |
device=device,
|
| 188 |
dtype=torch.float16
|
| 189 |
)
|
| 190 |
+
imagedream_pipeline = MVDreamPipeline.from_pretrained(
|
| 191 |
+
"ashawkey/imagedream-ipmv-diffusers", # remote weights
|
| 192 |
+
torch_dtype=torch.float16,
|
| 193 |
+
trust_remote_code=True,
|
| 194 |
+
)
|
| 195 |
+
generator = torch.Generator(device)
|
| 196 |
+
|
| 197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
# for 3D latent set diffusion
|
| 199 |
ckpt_path = "./ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt"
|
| 200 |
config_path = "./ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml"
|
|
|
|
| 222 |
|
| 223 |
with gr.Row():
|
| 224 |
with gr.Column(scale=2):
|
| 225 |
+
with gr.Column():
|
| 226 |
+
# input image
|
| 227 |
+
with gr.Row():
|
| 228 |
+
image_input = gr.Image(
|
| 229 |
+
label="Image Input",
|
| 230 |
+
image_mode="RGBA",
|
| 231 |
+
sources="upload",
|
| 232 |
+
type="pil",
|
| 233 |
+
)
|
| 234 |
+
run_btn = gr.Button('Generate', variant='primary', interactive=True)
|
| 235 |
+
|
| 236 |
with gr.Row():
|
| 237 |
+
gr.Markdown('''Try a different <b>seed and MV Model</b> for better results. Good Luck :)''')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
with gr.Row():
|
| 239 |
seed = gr.Number(0, label='Seed', show_label=True)
|
| 240 |
+
mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=list(mvimg_model_config_list))
|
| 241 |
more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False)
|
| 242 |
+
with gr.Row():
|
| 243 |
+
# input prompt
|
| 244 |
+
text = gr.Textbox(label="Prompt (Opt.)", info="only works for ImageDream")
|
| 245 |
+
|
| 246 |
+
with gr.Accordion('Advanced options', open=False):
|
| 247 |
+
# negative prompt
|
| 248 |
+
neg_text = gr.Textbox(label="Negative Prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate')
|
| 249 |
+
# elevation
|
| 250 |
+
elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0)
|
| 251 |
+
|
| 252 |
with gr.Row():
|
| 253 |
gr.Examples(
|
| 254 |
examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")],
|
|
|
|
| 278 |
run_3d_btn = gr.Button('Only Generate 3D', interactive=True)
|
| 279 |
|
| 280 |
with gr.Accordion('Advanced options (2D)', open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
with gr.Row():
|
| 282 |
foreground_ratio = gr.Slider(
|
| 283 |
label="Foreground Ratio",
|
|
|
|
| 290 |
with gr.Row():
|
| 291 |
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys()))
|
| 292 |
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"])
|
| 293 |
+
backgroud_color = gr.ColorPicker(label="Background Color", value="#FFFFFF", interactive=True)
|
| 294 |
+
# backgroud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=True)
|
| 295 |
|
| 296 |
with gr.Row():
|
| 297 |
+
mvimg_guidance_scale = gr.Number(value=4.0, minimum=3, maximum=10, label="2D Guidance Scale")
|
| 298 |
mvimg_steps = gr.Number(value=30, minimum=20, maximum=100, label="2D Sample Steps")
|
| 299 |
|
| 300 |
with gr.Accordion('Advanced options (3D)', open=False):
|
|
|
|
| 311 |
outputs = [output_model_obj]
|
| 312 |
rmbg = RMBG(device)
|
| 313 |
|
|
|
|
| 314 |
model = load_model(ckpt_path, config_path, device)
|
| 315 |
|
| 316 |
run_btn.click(fn=check_input_image, inputs=[image_input]
|
| 317 |
).success(
|
| 318 |
fn=rmbg.run,
|
| 319 |
+
inputs=[rmbg_type, image_input, foreground_ratio, background_choice, backgroud_color],
|
| 320 |
outputs=[image_input]
|
| 321 |
).success(
|
| 322 |
fn=gen_mvimg,
|
| 323 |
+
inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation],
|
| 324 |
outputs=[view_front, view_right, view_back, view_left]
|
| 325 |
).success(
|
| 326 |
fn=image2mesh,
|
|
|
|
| 328 |
outputs=outputs,
|
| 329 |
api_name="generate_img2obj")
|
| 330 |
run_mv_btn.click(fn=gen_mvimg,
|
| 331 |
+
inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation],
|
| 332 |
outputs=[view_front, view_right, view_back, view_left]
|
| 333 |
)
|
| 334 |
run_3d_btn.click(fn=image2mesh,
|