Update app.py
Browse files
app.py
CHANGED
|
@@ -6,20 +6,24 @@ from diffusers import FluxPipeline
|
|
| 6 |
from huggingface_hub.utils import RepositoryNotFoundError
|
| 7 |
|
| 8 |
pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16).to("cuda")
|
|
|
|
| 9 |
|
| 10 |
@spaces.GPU(duration=70)
|
| 11 |
-
def generate(prompt, negative_prompt, width, height, sample_steps, lora_id):
|
| 12 |
try:
|
| 13 |
-
pipeline.load_lora_weights(lora_id)
|
|
|
|
|
|
|
| 14 |
except RepositoryNotFoundError:
|
| 15 |
raise ValueError(f"Recieved invalid FLUX LoRA.")
|
| 16 |
|
| 17 |
-
return pipeline(prompt=f"{prompt}\nDO NOT INCLUDE {negative_prompt}", width=width, height=height, num_inference_steps=sample_steps, generator=torch.Generator("cpu").manual_seed(42), guidance_scale=7).images[0]
|
| 18 |
|
| 19 |
with gr.Blocks() as interface:
|
| 20 |
with gr.Column():
|
| 21 |
with gr.Row():
|
| 22 |
with gr.Column():
|
|
|
|
| 23 |
prompt = gr.Textbox(label="Prompt", info="What do you want?", value="Keanu Reeves holding a neon sign reading 'Hello, world!', 32k HDR, paparazzi", lines=4, interactive=True)
|
| 24 |
negative_prompt = gr.Textbox(label="Negative Prompt", info="What do you want to exclude from the image?", value="ugly, low quality", lines=4, interactive=True)
|
| 25 |
with gr.Column():
|
|
@@ -35,7 +39,7 @@ with gr.Blocks() as interface:
|
|
| 35 |
sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True)
|
| 36 |
lora_id = gr.Textbox(label="Adapter Repository", info="ID of the FLUX LoRA", value="pepper13/fluxfw")
|
| 37 |
|
| 38 |
-
generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps, lora_id], outputs=[output])
|
| 39 |
|
| 40 |
if __name__ == "__main__":
|
| 41 |
interface.launch()
|
|
|
|
| 6 |
from huggingface_hub.utils import RepositoryNotFoundError
|
| 7 |
|
| 8 |
pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16).to("cuda")
|
| 9 |
+
pipelineImg = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16).to("cuda")
|
| 10 |
|
| 11 |
@spaces.GPU(duration=70)
|
| 12 |
+
def generate(image, prompt, negative_prompt, width, height, sample_steps, lora_id):
|
| 13 |
try:
|
| 14 |
+
# pipeline.load_lora_weights(lora_id)
|
| 15 |
+
init_image = load_image(image).resize((1024, 1024))
|
| 16 |
+
pipelineImg.load_lora_weights(lora_id)
|
| 17 |
except RepositoryNotFoundError:
|
| 18 |
raise ValueError(f"Recieved invalid FLUX LoRA.")
|
| 19 |
|
| 20 |
+
return pipeline(prompt=f"{prompt}\nDO NOT INCLUDE {negative_prompt}", image=init_image, width=width, height=height, num_inference_steps=sample_steps, generator=torch.Generator("cpu").manual_seed(42), guidance_scale=7).images[0]
|
| 21 |
|
| 22 |
with gr.Blocks() as interface:
|
| 23 |
with gr.Column():
|
| 24 |
with gr.Row():
|
| 25 |
with gr.Column():
|
| 26 |
+
image = gr.Image(label="Input image", show_label=False, type="filepath")
|
| 27 |
prompt = gr.Textbox(label="Prompt", info="What do you want?", value="Keanu Reeves holding a neon sign reading 'Hello, world!', 32k HDR, paparazzi", lines=4, interactive=True)
|
| 28 |
negative_prompt = gr.Textbox(label="Negative Prompt", info="What do you want to exclude from the image?", value="ugly, low quality", lines=4, interactive=True)
|
| 29 |
with gr.Column():
|
|
|
|
| 39 |
sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True)
|
| 40 |
lora_id = gr.Textbox(label="Adapter Repository", info="ID of the FLUX LoRA", value="pepper13/fluxfw")
|
| 41 |
|
| 42 |
+
generate_button.click(fn=generate, inputs=[image, prompt, negative_prompt, width, height, sampling_steps, lora_id], outputs=[output])
|
| 43 |
|
| 44 |
if __name__ == "__main__":
|
| 45 |
interface.launch()
|